scispace - formally typeset
Search or ask a question

Showing papers in "Acta Physiologica in 2014"


Journal ArticleDOI
TL;DR: Factors that influence muscle radiation attenuation, a parameter which is inversely related to muscle fat content, are summarized and available evidence suggests that muscle attenuation is plastic with physiological variation induced by the process of ageing, as well as by aerobic training.
Abstract: Skeletal muscle contains intramyocellular lipid droplets within the cytoplasm of myocytes as well as intermuscular adipocytes. These depots exhibit physiological and pathological variation which has been revealed with the advent of diagnostic imaging approaches: magnetic resonance (MR) imaging, MR spectroscopy and computed tomography (CT). CT uses computer-processed X-rays and is now being applied in muscle physiology research. The purpose of this review is to present CT methodologies and summarize factors that influence muscle radiation attenuation, a parameter which is inversely related to muscle fat content. Pre-defined radiation attenuation ranges are used to demarcate intermuscular adipose tissue [from −190 to −30 Hounsfield units (HU)] and muscle (−29 HU to +150 HU). Within the latter range, the mean muscle radiation attenuation [muscle (radio) density] is reported. Inconsistent criteria for the upper and lower HU cut-offs used to characterize muscle attenuation limit comparisons between investigations. This area of research would benefit from standardized criteria for reporting muscle attenuation. Available evidence suggests that muscle attenuation is plastic with physiological variation induced by the process of ageing, as well as by aerobic training, which probably reflects accumulation of lipids to fuel aerobic work. Pathological variation in muscle attenuation reflects excess fat deposition in the tissue and is observed in people with obesity, diabetes type II, myositis, osteoarthritis, spinal stenosis and cancer. A poor prognosis and different types of morbidity are predicted by the presence of reduced mean muscle attenuation values in patients with these conditions; however, the biological features of muscle with these characteristics require further investigation.

463 citations


Journal ArticleDOI
TL;DR: The concepts of NVU, the coupling mechanisms and research strategies are reviewed, which are one of the fundamental mechanisms for the central nervous system homeostasis.
Abstract: The cerebral hyperaemia is one of the fundamental mechanisms for the central nervous system homeostasis. Due also to this mechanism, oxygen and nutrients are maintained in satisfactory levels, through vasodilation and vasoconstriction. The brain hyperaemia, or coupling, is accomplished by a group of cells, closely related to each other; called neurovascular unit (NVU). The neurovascular unit is composed by neurones, astrocytes, endothelial cells of blood-brain barrier (BBB), myocytes, pericytes and extracellular matrix components. These cells, through their intimate anatomical and chemical relationship, detect the needs of neuronal supply and trigger necessary responses (vasodilation or vasoconstriction) for such demands. Here, we review the concepts of NVU, the coupling mechanisms and research strategies.

387 citations


Journal ArticleDOI
TL;DR: The need to understand sex‐based differences in fatigability to shed light on the benefits and limitations that fatigability can exert for men and women during daily tasks, exercise performance, training and rehabilitation in both health and disease is emphasized.
Abstract: Sex-related differences in physiology and anatomy are responsible for profound differences in neuromuscular performance and fatigability between men and women. Women are usually less fatigable than men for similar intensity isometric fatiguing contractions. This sex difference in fatigability, however, is task specific because different neuromuscular sites will be stressed when the requirements of the task are altered, and the stress on these sites can differ for men and women. Task variables that can alter the sex difference in fatigability include the type, intensity and speed of contraction, the muscle group assessed and the environmental conditions. Physiological mechanisms that are responsible for sex-based differences in fatigability may include activation of the motor neurone pool from cortical and subcortical regions, synaptic inputs to the motor neurone pool via activation of metabolically sensitive small afferent fibres in the muscle, muscle perfusion and skeletal muscle metabolism and fibre type properties. Non-physiological factors such as the sex bias of studying more males than females in human and animal experiments can also mask a true understanding of the magnitude and mechanisms of sex-based differences in physiology and fatigability. Despite recent developments, there is a tremendous lack of understanding of sex differences in neuromuscular function and fatigability, the prevailing mechanisms and the functional consequences. This review emphasizes the need to understand sex-based differences in fatigability to shed light on the benefits and limitations that fatigability can exert for men and women during daily tasks, exercise performance, training and rehabilitation in both health and disease.

368 citations


Journal ArticleDOI
TL;DR: Whether skin temperature represents ambient temperature and serves as a feedforward signal for the thermoregulation system, or whether it is one of the body's temperatures and provides feedback, is analyzed.
Abstract: This review analyses whether skin temperature represents ambient temperature and serves as a feedforward signal for the thermoregulation system, or whether it is one of the body's temperatures and provides feedback. The body is covered mostly by hairy (non-glabrous) skin, which is typically insulated from the environment (with clothes in humans and with fur in non-human mammals). Thermal signals from hairy skin represent a temperature of the insulated superficial layer of the body and provide feedback to the thermoregulation system. It is explained that this feedback is auxiliary, both negative and positive, and that it reduces the system's response time and load error. Non-hairy (glabrous) skin covers specialized heat-exchange organs (e.g. the hand), which are also used to explore the environment. In thermoregulation, these organs are primarily effectors. Their main thermosensory-related role is to assess local temperatures of objects explored; these local temperatures are feedforward signals for various behaviours. Non-hairy skin also contributes to the feedback for thermoregulation, but this contribution is limited. Autonomic (physiological) thermoregulation does not use feedforward signals. Thermoregulatory behaviours use both feedback and feedforward signals. Implications of these principles to thermopharmacology, a new approach to achieving biological effects by blocking temperature signals with drugs, are discussed.

297 citations


Journal ArticleDOI
TL;DR: This work investigated architectural, functional and molecular responses of human skeletal muscle to concentric (CON) or eccentric (ECC) resistance training (RT) and found no significant differences between the two methods.
Abstract: Aim We investigated architectural, functional and molecular responses of human skeletal muscle to concentric (CON) or eccentric (ECC) resistance training (RT). Methods Twelve young males performed 10 weeks of concentric (CON) or eccentric (ECC) resistance training (RT) (n = 6 CON, 6 ECC). An additional 14 males were recruited to evaluate acute muscle fascicle behaviour and molecular signalling in biopsies collected from vastus lateralis (VL) after 30 min of single bouts of CON or ECC exercise. VL volume was measured by magnetic resonance imaging. Muscle architecture (fascicle length, Lf; pennation angle, PA) was evaluated by ultrasonography. Muscle remodelling signals to CON or ECC loading [MAPK/AKT-mammalian target of rapamycin (mTOR) signalling] and inflammatory pathway (TNFαMurf-1-MAFbx) were evaluated by immunoblotting. Results Despite the ~1.2-fold greater load of the ECC group, similar increases in muscle volume (+8% CON and +6% ECC) and in maximal voluntary isometric contraction (+9% CON and +11% ECC) were found after RT. However, increases in Lf were greater after ECC than CON (+12 vs. +5%) while increases in PA were greater in CON than ECC (+30 vs. +5%). Distinct architectural adaptations were associated with preferential growth in the distal regions of VL for ECC (+ECC +8% vs. +CON +2) and mid belly for CON (ECC +7 vs. CON +11%). While MAPK activation (p38MAPK, ERK1/2, p90RSK) was specific to ECC, neither mode affected AKT-mTOR or inflammatory signalling 30 min after exercise. Conclusion Muscle growth with CON and ECC RT occurs with different morphological adaptations reflecting distinct fibre fascicle behaviour and molecular responses.

265 citations


Journal ArticleDOI
TL;DR: This work assessed the impact of 5 and 14 days of disuse on skeletal muscle mass, strength and associated intramuscular molecular signalling responses.
Abstract: AIM: The impact of disuse on the loss of skeletal muscle mass and strength has been well documented. Given that most studies have investigated muscle atrophy after more than 2 weeks of disuse, few data are available on the impact of shorter periods of disuse. We assessed the impact of 5 and 14 days of disuse on skeletal muscle mass, strength and associated intramuscular molecular signaling responses. METHODS: Twenty-four healthy, young (23+/-1 y) males were subjected to either 5 (n=12) or 14 (n=12) days of one-legged knee immobilization using a full leg cast. Before and immediately after the immobilization period, quadriceps muscle cross-sectional area (CSA), leg lean mass and muscle strength were assessed, and biopsies were collected from the vastus lateralis. RESULTS: Quadriceps muscle CSA declined from baseline by 3.5+/-0.5 (P<0.0001) and 8.4+/-2.8% (P<0.0001), leg lean mass was reduced by 1.4+/-0.7 (P=0.07) and 3.1+/-0.7% (P<0.01), and strength decreased by 9.0+/-2.3 (P<0.0001) and 22.9+/-2.6% (P<0.0001) following 5 and 14 days of immobilization, respectively. Muscle myostatin mRNA expression doubled following immobilization (P<0.05) in both groups, while the myostatin precursor isoform protein content decreased after 14 days only (P<0.05). Muscle MAFBx mRNA expression increased from baseline by a similar magnitude following either 5 or 14 days of disuse, whereas MuRF1 mRNA expression had increased significantly only after 5 days. CONCLUSION: We conclude that even short periods of muscle disuse can cause substantial loss of skeletal muscle mass and strength, and are accompanied by an early catabolic molecular signaling response. This article is protected by copyright. All rights reserved.

234 citations


Journal ArticleDOI
TL;DR: To depict the endocrine crosstalk between adipose tissue with skeletal muscle, the cardiovascular system and the pancreas, the main findings regarding the direct effects of adiponectin, leptin, DPP4 and visfatin on skeletal muscle insulin resistance, cardiovascular function and β‐cell growth and function are reported.
Abstract: The discovery of adipokines has revealed adipose tissue as a central node in the interorgan crosstalk network, which mediates the regulation of multiple organs and tissues. Adipose tissue is a true endocrine organ that produces and secretes a wide range of mediators regulating adipose tissue function in an auto-/paracrine manner and important distant targets, such as the liver, skeletal muscle, the pancreas and the cardiovascular system. In metabolic disorders such as obesity, enlargement of adipocytes leads to adipose tissue dysfunction and a shift in the secretory profile with an increased release of pro-inflammatory adipokines. Adipose tissue dysfunction has a central role in the development of insulin resistance, type 2 diabetes, and cardiovascular diseases. Besides the well-acknowledged role of adipokines in metabolic diseases, and the increasing number of adipokines being discovered in the last years, the mechanisms underlying the release of many adipokines from adipose tissue remain largely unknown. To combat metabolic diseases, it is crucial to better understand how adipokines can modulate adipose tissue growth and function. Therefore, we will focus on adipokines with a prominent role in auto-/paracrine crosstalk within the adipose tissue such as RBP4, HO-1, WISP2, SFRPs and chemerin. To depict the endocrine crosstalk between adipose tissue with skeletal muscle, the cardiovascular system and the pancreas, we will report the main findings regarding the direct effects of adiponectin, leptin, DPP4 and visfatin on skeletal muscle insulin resistance, cardiovascular function and β-cell growth and function.

223 citations


Journal ArticleDOI
TL;DR: The aim was to investigate the capacity for daily NMES to attenuate muscle atrophy during short‐term muscle disuse.
Abstract: Aim Short periods of muscle disuse, due to illness or injury, result in substantial skeletal muscle atrophy. Recently, we have shown that a single session of neuromuscular electrical stimulation (NMES) increases muscle protein synthesis rates. The aim was to investigate the capacity for daily NMES to attenuate muscle atrophy during short-term muscle disuse. Methods Twenty-four healthy, young (23 ± 1 year) males participated in the present study. Volunteers were subjected to 5 days of one-legged knee immobilization with (NMES; n = 12) or without (CON; n = 12) supervised NMES sessions (40-min sessions, twice daily). Two days prior to and immediately after the immobilization period, CT scans and single-leg one-repetition maximum (1RM) strength tests were performed to assess quadriceps muscle cross-sectional area (CSA) and leg muscle strength respectively. Furthermore, muscle biopsies were taken to assess muscle fibre CSA, satellite cell content and mRNA and protein expression of selected genes. Results In CON, immobilization reduced quadriceps CSA by 3.5 ± 0.5% (P < 0.0001) and muscle strength by 9 ± 2% (P < 0.05). In contrast, no significant muscle loss was detected following immobilization in NMES although strength declined by 7 ± 3% (P < 0.05). Muscle MAFbx and MuRF1 mRNA expression increased following immobilization in CON (P < 0.001 and P = 0.07 respectively), whereas levels either declined (P < 0.01) or did not change in NMES, respectively. Immobilization led to an increase in muscle myostatin mRNA expression in CON (P < 0.05), but remained unchanged in NMES. Conclusion During short-term disuse, NMES represents an effective interventional strategy to prevent the loss of muscle mass, but it does not allow preservation of muscle strength. NMES during disuse may be of important clinical relevance in both health and disease.

176 citations


Journal ArticleDOI
TL;DR: The present state of knowledge on the functions, the taxonomic distribution and evolution of vertebrate globins are reviewed, drawing conclusions about the functional changes underlying present‐day globin diversity.
Abstract: Globins are haem-proteins that bind O2 and thus play an important role in the animal's respiration and oxidative energy production. However, globins may also have other functions such as the decomposition or production of NO, the detoxification of reactive oxygen species or intracellular signalling. In addition to the well-investigated haemoglobins and myoglobins, genome sequence analyses have led to the identification of six further globin types in vertebrates: androglobin, cytoglobin, globin E, globin X, globin Y and neuroglobin. Here, we review the present state of knowledge on the functions, the taxonomic distribution and evolution of vertebrate globins, drawing conclusions about the functional changes underlying present-day globin diversity.

155 citations


Journal ArticleDOI
TL;DR: This study aimed to quantify the changes in shear elastic modulus in different regions of the elbow flexors after eccentric exercise and their relation to muscle length.
Abstract: Aim: Changes in muscle stiffness after exercise-induced muscle damage have been classically inferred from passive torque-angle curves. Elastographic techniques can be used to estimate the shear modulus of a localized muscular area. This study aimed to quantify the changes in shear elastic modulus in different regions of the elbow flexors after eccentric exercise and their relation to muscle length. Methods: Shear elastic modulus and transverse relaxation time (T2) were measured in the biceps brachii and brachialis muscles of sixteen participants, before, 1 h, 48 h and 21 days after three sets of ten maximal isokinetic eccentric contractions performed at 120° s-1. Results: The shear elastic modulus of the elbow flexors significantly increased 1 h (+46%; P = 0.005), with no significant change at 48 h and 21D, post-exercise. In contrast, T2 was not modified at 1 h but significantly increased at 48 h (+15%; P < 0.05). The increase in shear elastic modulus was more pronounced at long muscle lengths and reached a similar extent in the different regions of the elbow flexors. The normalized hysteresis area of shear elastic modulus-length relationship for the biceps brachii increased 1 h post-exercise (31%) in comparison with the pre-exercise value (18%), but was not significantly altered after five stretching cycles (P = 0.63). Conclusion: Our results show homogeneous changes in muscle shear elastic modulus within and between elbow flexors. The greater increase in shear elastic modulus observed at long muscle lengths suggests the putative involvement of both cross-bridges number and titin in the modifications of muscle shear elastic modulus after damaging exercise.

111 citations


Journal ArticleDOI
TL;DR: Evidence is suggested that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways, and iron chelation may be a potential therapeutic approach to reduce disease severity and mortality among diabetes patients.
Abstract: The interest in the role of ferrous iron in diabetes pathophysiology has been revived by recent evidence of iron as an important determinant of pancreatic islet inflammation and as a biomarker of diabetes risk and mortality. The iron metabolism in the β-cell is complex. Excess free iron is toxic, but at the same time, iron is required for normal β-cell function and thereby glucose homeostasis. In the pathogenesis of diabetes, iron generates reactive oxygen species (ROS) by participating in the Fenton chemistry, which can induce oxidative damage and apoptosis. The aim of this review is to present and discuss recent evidence, suggesting that iron is a key pathogenic factor in both type 1 and type 2 diabetes with a focus on inflammatory pathways. Pro-inflammatory cytokine-induced β-cell death is not fully understood, but may include iron-induced ROS formation resulting in dedifferentiation by activation of transcription factors, activation of the mitochondrial apoptotic machinery or of other cell death mechanisms. The pro-inflammatory cytokine IL-1β facilitates divalent metal transporter 1 (DMT1)-induced β-cell iron uptake and consequently ROS formation and apoptosis, and we propose that this mechanism provides the relay between inflammation and oxidative β-cell damage. Iron chelation may be a potential therapeutic approach to reduce disease severity and mortality among diabetes patients. However, the therapeutic effect and safety of iron reduction need to be tested in clinical trials before dietary interventions or the use of iron chelation therapy titrated to avoid anaemia.

Journal ArticleDOI
TL;DR: The role of maternal western‐type diet in the development of non‐alcoholic fatty liver disease (NAFLD) in the offspring is characterized using a mouse model.
Abstract: AIM: Metabolic programming via components of the maternal diet during gestation may play a role in the development of different aspects of the metabolic syndrome. Using a mouse model, we aimed to characterize the role of maternal western-type diet in the development of non-alcoholic fatty liver disease (NAFLD) in the offspring. METHODS: Female mice were fed either a western (W) or low-fat control (L) semisynthetic diet before and during gestation and lactation. At weaning, male offspring were assigned either the W or the L diet, generating four experimental groups: WW, WL, LW and LL offspring. Biochemical, histological and epigenetic indicators were investigated at 29 weeks of age. RESULTS: Male offspring exposed to prenatal and post-weaning western-style diet (WW) showed hepatomegaly combined with accumulation of hepatic cholesterol and triglycerides. This accumulation was associated with up-regulation of de novo lipid synthesis, inflammation and dysregulation of lipid storage. Elevated hepatic transaminases and increased expression of Tnfa, Cd11, Mcp1 and Tgfb underpin the severity of liver injury. Histopathological analysis revealed the presence of advanced steatohepatitis in WW offspring. In addition, alterations in DNA methylation in key metabolic genes (Ppara, Insig, and Fasn) were detected. CONCLUSION: Maternal dietary fat intake during early development programmes susceptibility to liver disease in male offspring, mediated by disturbances in lipid metabolism and inflammatory response. Long-lasting epigenetic changes may underlie this dysregulation.

Journal ArticleDOI
TL;DR: This review highlights the evidence obtained from this mouse model for a critical role of feto‐placental 11β‐HSD2 in determining the adverse programming outcomes and unravels the direct significance of 11 β‐ HSD2 for developmental programming, placental function, neurodevelopment and adult behaviour.
Abstract: Foetal growth restriction (FGR), reflective of an adverse intrauterine environment, confers a significantly increased risk of perinatal mortality and morbidity. In addition, low birthweight associates with adult diseases including hypertension, metabolic dysfunction and behavioural disorders. A key mechanism underlying FGR is exposure of the foetus to glucocorticoids which, while critical for foetal development, in excess can reduce foetal growth and permanently alter organ structure and function, predisposing to disease in later life. Foetal glucocorticoid exposure is regulated, at least in part, by the enzyme 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which catalyses the intracellular inactivation of glucocorticoids. This enzyme is highly expressed within the placenta at the maternal-foetal interface, limiting the passage of glucocorticoids to the foetus. Expression of 11β-HSD2 is also high in foetal tissues, particularly within the developing central nervous system. Down-regulation or genetic deficiency of placental 11β-HSD2 is associated with significant reductions in foetal growth and birth weight, and programmed outcomes in adulthood. To unravel the direct significance of 11β-HSD2 for developmental programming, placental function, neurodevelopment and adult behaviour have been extensively investigated in a mouse knockout of 11β-HSD2. This review highlights the evidence obtained from this mouse model for a critical role of feto-placental 11β-HSD2 in determining the adverse programming outcomes.

Journal ArticleDOI
TL;DR: The potential importance of leptin in the developmental programming of hypertension in obese pregnancy is highlighted and insight from animal models raises the possibility that early‐life exposure to leptin in humans may lead to early onset essential hypertension.
Abstract: Mother-child cohort studies have established that both pre-pregnancy body mass index (BMI) and gestational weight gain are independently associated with cardio-metabolic risk factors in young adult offspring, including systolic and diastolic blood pressure. Animal models in sheep and non-human primates provide further evidence for the influence of maternal obesity on offspring cardiovascular function, whilst recent studies in rodents suggest that perinatal exposure to the metabolic milieu of maternal obesity may permanently change the central regulatory pathways involved in blood pressure regulation. Leptin plays an important role in the central control of appetite, is also involved in activation of efferent sympathetic pathways to both thermogenic and non-thermogenic tissues, such as the kidney, and is therefore implicated in obesity-related hypertension. Leptin is also thought to have a neurotrophic role in the development of the hypothalamus, and altered neonatal leptin profiles secondary to maternal obesity are associated with permanently altered hypothalamic structure and function. In rodent studies, maternal obesity confers persistent sympathoexcitatory hyper-responsiveness and hypertension acquired in the early stages of development. Experimental neonatal hyperleptinaemia in naive rat pups provides further evidence of heightened sympathetic tone and proof of principle that hyperleptinaemia during a critical window of hypothalamic development may directly lead to adulthood hypertension. Insight from these animal models raises the possibility that early-life exposure to leptin in humans may lead to early onset essential hypertension. Ongoing mother-child cohort and intervention studies in obese pregnant women provide a unique opportunity to address associations between maternal obesity and offspring cardiovascular function. The goal of the review is to highlight the potential importance of leptin in the developmental programming of hypertension in obese pregnancy.

Journal ArticleDOI
TL;DR: Findings from different experimental models are highlighted to provide the current state of knowledge related to the mechanisms that contribute to the aetiology of sex differences in the developmental programming of blood pressure and hypertension.
Abstract: Experimental models of developmental programming provide proof of concept and support Barker's original findings that link birthweight and blood pressure. Many experimental models of developmental insult demonstrate a sex difference with male offspring exhibiting a higher blood pressure in young adulthood relative to their age-matched female counterparts. It is well recognized that men exhibit a higher blood pressure relative to age-matched women prior to menopause. Yet, whether this sex difference is noted in individuals born with low birthweight is not clear. Sex differences in the developmental programming of blood pressure may originate from innate sex-specific differences in expression of the renin angiotensin system that occur in response to adverse influences during early life. Sex differences in the developmental programming of blood pressure may also involve the influence of the hormonal milieu on regulatory systems key to the long-term control of blood pressure such as the renin angiotensin system in adulthood. In addition, the sex difference in blood pressure in offspring exposed to a developmental insult may involve innate sex differences in oxidative status or the endothelin system or may be influenced by age-dependent changes in the developmental programming of cardiovascular risk factors such as adiposity. Therefore, this review will highlight findings from different experimental models to provide the current state of knowledge related to the mechanisms that contribute to the aetiology of sex differences in the developmental programming of blood pressure and hypertension.

Journal ArticleDOI
TL;DR: A focused workshop comprising comparative cardiovascular physiologists to ponder some of the key unanswered questions in the field, centred around three themes which involved poorly understood aspects of the interaction of the cardiovascular system with the lymphatic, renal and digestive systems.
Abstract: The inaugural Kjell Johansen Lecture in the Zoophysiology Department of Aarhus University (Aarhus, Denmark) afforded the opportunity for a focused workshop comprising comparative cardiovascular physiologists to ponder some of the key unanswered questions in the field. Discussions were centred around three themes. The first considered function of the vertebrate heart in its various forms in extant vertebrates, with particular focus on the role of intracardiac shunts, the trabecular (‘spongy’) nature of the ventricle in many vertebrates, coronary blood supply and the building plan of the heart as revealed by molecular approaches. The second theme involved the key unanswered questions in the control of the cardiovascular system, emphasizing autonomic control, hypoxic vasoconstriction and developmental plasticity in cardiovascular control. The final theme involved poorly understood aspects of the interaction of the cardiovascular system with the lymphatic, renal and digestive systems. Having posed key questions around these three themes, it is increasingly clear that an abundance of new analytical tools and approaches will allow us to learn much about vertebrate cardiovascular systems in the coming years.

Journal ArticleDOI
TL;DR: As important players in gene regulation, ncRNAs have huge potential in opening innovative therapeutic avenues against diabetes and associated complications.
Abstract: The progression of diabetes is accompanied by increasing demand to the beta-cells to produce and secrete more insulin, requiring complex beta-cell adaptations. Functionally active and ubiquitous non-coding RNAs (ncRNAs) have the capacity to take part in such adaptations as they have been shown to be key regulatory molecules in various biological processes. In the pancreatic islets, the function of ncRNAs and their contribution to disease development is beginning to be understood. Here, we review the different classes of ncRNAs, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), and their potential contribution to insulin secretion. A special focus will be on miRNAs and their regulatory function in beta-cell physiology and insulin exocytosis. As important players in gene regulation, ncRNAs have huge potential in opening innovative therapeutic avenues against diabetes and associated complications.

Journal ArticleDOI
TL;DR: It remains to be determined whether high fat rather than Western diet exacerbates the development of obesity and other characteristics of metabolic syndrome and vascular function.
Abstract: Aim Nutrition contributes to increased adiposity, but it remains to be determined whether high fat rather than Western diet exacerbates the development of obesity and other characteristics of metabolic syndrome and vascular function. Methods We studied the effects of high fat (45% kcal) diet (HFD) and equal caloric Western diet (WD) high in fat, sucrose and cholesterol for 8 weeks in male C57B1/6N mice. Results Mice fed with HFD and WD showed substantially higher body adiposity (body fat %) compared with control mice receiving low fat (10%) diet (LFD). However, total body weight was higher only in HFD mice compared with other groups. The amount of liver triglycerides, cholesterol and oxidative damage was higher in WD mice compared with mice on LFD. There were no significant differences in fasting blood glucose or serum insulin, serum or muscle triglycerides, glucose tolerance or systolic blood pressure between the groups, but serum free fatty acids were increased in HFD mice compared with LFD. Increased levels of tissue and serum diene conjugation as a marker of oxidative stress were evident especially in WD mice. The endothelium-dependent relaxations were significantly impaired in the small mesenteric arteries of HFD mice, but not in the aorta. Maximal relaxations correlated negatively with body adiposity in WD but not in HFD mice. Conclusions The major finding in the present study is that without changing body weight, Western diet induces marked whole-body oxidative stress and elevates body adiposity, which associates with the endothelial function of resistance arteries.

Journal ArticleDOI
TL;DR: Changes in adipose tissue composition in early life are essential for survival but also influence adiposity in later life and were thus examined in detail during early development.
Abstract: Aim Hypothermia induced by cold exposure at birth is prevented in sheep by the rapid onset of non-shivering thermogenesis in brown adipose tissue (BAT). Changes in adipose tissue composition in early life are therefore essential for survival but also influence adiposity in later life and were thus examined in detail during early development. Methods Changes in adipose composition were investigated by immunohistochemistry and qRT-PCR between the period from the first appearance of adipose in the mid gestation foetus, through birth and up to 1 month of age. Results We identified four distinct phases of development, each associated with pronounced changes in tissue histology and in distribution of the BAT specific uncoupling protein (UCP)1. At mid gestation, perirenal adipose tissue exhibited a dense proliferative, structure marked by high expression of KI-67 but with no UCP1 or visible lipid droplets. By late gestation large quantities of UCP1 were present, lipid storage was evident and expression of BAT-related genes were abundant (e.g. prolactin and β3 receptors). Subsequently, within 12 h of birth, the depot was largely depleted of lipid and expression of genes such as UCP1, PGC1α, CIDEA peaked. By 30 days UCP1 was undetectable and the depot contained large lipid droplets; however, genes characteristic of BAT (e.g. PRDM16 and BMP7) and most characteristic of white adipose tissue (e.g. leptin and RIP140) were still abundant. Conclusion Adipose tissue undergoes profound compositional changes in early life, of which an increased understanding could offer potential interventions to retain BAT in later life.

Journal ArticleDOI
TL;DR: The aim of this study was to investigate the HSP response after BFRE in human skeletal muscle, and found that low‐load blood‐flow‐restricted resistance exercise does not induce significant muscle damage.
Abstract: Aim Heat-shock proteins (HSP) are important chaperones for stressed and damaged proteins. Low-load blood-flow-restricted resistance exercise (BFRE) is generally believed not to induce significant muscle damage, but is hitherto unverified with intracellular markers. Consequently, the aim of this study was to investigate the HSP response after BFRE in human skeletal muscle. Methods Nine healthy volunteers performed five sets to failure of unilateral knee extension at 30% of 1RM with partial blood-flow restriction. The contralateral leg performed the same work with free blood flow. Muscle biopsies were collected before exercise, 1, 24 and 48 h after exercise and analysed for HSP27, αB-crystallin, HSP70, desmin, glycogen content and myosin heavy chain by immunohistochemistry, ELISA and western blotting. Results One hour after exercise, HSP27 and αB-crystallin levels were reduced in the cytosolic and increased in the cytoskeletal fraction in the BFRE leg. HSP70 showed a delayed response and was increased over 48 h in the BFRE leg. Immunohistochemical analyses showed higher staining intensity of HSP70 in type 1 fibres in the BFRE leg at 24 and 48 h post-exercise. PAS staining showed decreased glycogen levels after BFRE, and interestingly, glycogen was still depleted 48 h after exercise in the same fibres displaying high HSP70 staining (type 1 fibres). Conclusion Translocation of HSP27 and αB-crystallin from cytosol to cytoskeletal structures indicates that cytoskeletal proteins are stressed during BFRE. However, overt signs of myofibrillar disruptions were not observed. Interestingly, the stress response was more pronounced in type 1 than in type 2 fibres and coincided with low glycogen levels.

Journal ArticleDOI
TL;DR: It is remarkable that the interaction between Hp and gastrin may explain the pathogenesis of most diseases in the upper gastrointestinal tract.
Abstract: The purpose of this review, based upon 40 years of research, is to clear old controversies. The gastric juice is a strong acid with active enzymes (pepsin and lipase); ideal for killing swallowed microorganisms. Totally isolated rat stomach and histamine determination. Human gastric carcinomas were examined for ECL cell differentiation because tumours found in rodents after dosing with inhibitors of acid secretion were reclassified to be of ECL cell origin. The gastrin receptor is localized to the ECL cell only, where gastrin stimulates the function and growth. Drug-induced hypo-acidity induces hypergastrinaemia and ECL cell hyperplasia responsible for rebound acid hypersecretion. Every condition with long-term hypergastrinaemia disposes to ECL cell neoplasia. In man, both atrophic gastritis and gastrinoma lead to ECL cell carcinoids. Proton pump inhibitors induce hypergastrinaemia with ECL cell hyperplasia and ECL cell carcinoids that disappear when stopping treatment. The gastrin antagonist netazepide induces regression of ECL cell carcinoids due to atrophic gastritis. Human gastric carcinomas of diffuse type, particularly the signet-ring subtype, show ECL cell differentiation, suggesting involvement of gastrin in the carcinogenesis. Helicobacter pylori (Hp) causes gastritis and peptic ulcer, and when infecting the antrum only gives a slight hypergastrinaemia with acid hypersecretion predisposing to duodenal ulcer, but protecting from gastric cancer. When Hp infection spreads to oxyntic mucosa, it induces atrophy, reduced acid secretion and marked hypergastrinaemia and cancer.It is remarkable that the interaction between Hp and gastrin may explain the pathogenesis of most diseases in the upper gastrointestinal tract.

Journal ArticleDOI
TL;DR: Investigation of colonic electrolyte transport, the mucus layer and susceptibility against dextran sodium sulphate (DSS)‐induced colitis in Slc26a3−/− mice finds no explanation for this clinical finding.
Abstract: Aim Downregulated in adenoma (DRA, Slc26a3) is a member of the solute carrier family 26 (SLC26), family of anion transporters, which is mutated in familial chloride-losing diarrhoea (CLD). Besides Cl(-) -rich diarrhoea, CLD patients also have a higher-than-average incidence of intestinal inflammation. In a search for potential explanations for this clinical finding, we investigated colonic electrolyte transport, the mucus layer and susceptibility against dextran sodium sulphate (DSS)-induced colitis in Slc26a3(-/-) mice. Methods HCO3 (-) secretory (JHCO3 (-) ) and fluid absorptive rates were measured by single-pass perfusion in vivo and in isolated mid-distal colonic mucosa in Ussing chambers in vitro. Colonocyte intracellular pH (pHi ) was assessed fluorometrically, the mucus layer by immunohistochemistry and colitis susceptibility by the addition of DSS to the drinking water. Results HCO3 (-) secretory (JHCO3- ) and fluid absorptive rates were strongly reduced in Slc26a3(-/-) mice compared to wild-type (WT) littermates. Despite an increase in sodium/hydrogen exchanger 3 (NHE3) mRNA and protein expression, and intact acid-activation of NHE3, the high colonocyte pH in Slc26a3(-/-) mice prevented Na(+) /H(+) exchange-mediated fluid absorption in vivo. Mucin 2 (MUC2) immunohistochemistry revealed the absence of a firm mucus layer, implying that alkaline secretion and/or an absorptive flux may be necessary for optimal mucus gel formation. Slc26a3(-/-) mice were highly susceptible to DSS damage. Conclusions Deletion of DRA results in severely reduced colonic HCO3 (-) secretory rate, a loss of colonic fluid absorption, a lack of a firmly adherent mucus layer and a severely reduced colonic mucosal resistance to DSS damage. These data provide potential pathophysiological explanations for the increased susceptibility of CLD patients to intestinal inflammation.

Journal ArticleDOI
TL;DR: This study investigated genome‐wide mRNA expression in adipose tissue in healthy men before and after an exercise intervention to identify genes or pathways that mediate the beneficial effect of regular exercise.
Abstract: Adipose tissue has an important function in total energy homeostasis and its dysregulation may contribute to life-style related diseases such as type 2 diabetes, cancer and cardiovascular diseases. The aim of this study was to investigate genome-wide mRNA expression in adipose tissue in healthy men before and after an exercise intervention to identify genes or pathways that mediate the beneficial effect of regular exercise. We also investigated the difference in adipose tissue mRNA expression between individuals with or without a family history of type 2 diabetes.

Journal ArticleDOI
TL;DR: It is hypothesize that the enhanced dopamine system and reduced acetylcholine (Ach) in gastric tissues might contribute to the delayed gastric emptying observed in PD.
Abstract: Aim Gastroparesis is a common non-motor system symptom of Parkinson's disease (PD). However, the mechanism responsible for the gastric motor abnormality is not clear. We previously reported on the impaired gastric motility in 6-hydroxydopamine (6-OHDA) rats, which were treated with a bilateral microinjection of 6-OHDA in the substantia nigra (SN). We hypothesize that the enhanced dopamine system and reduced acetylcholine (Ach) in gastric tissues might contribute to the delayed gastric emptying observed in PD. Methods A strain gauge force transducer, digital X-ray imaging system, Western blot, immunofluorescence and Radio Immunoassay were used in this study. Results Dopaminergic neurones in the SN were greatly reduced following the bilateral microinjection of 6-OHDA. 6-OHDA rats exhibited impaired gastric motility and delayed gastric emptying, accompanied by increased dopamine content and the overexpression of D2 receptors in the stomach. The administration of the D2 receptor antagonist domperidone relieved gastric dysmotility in 6-OHDA rats, but the D1 receptor antagonist SCH23390 failed to do so. Subdiaphragmatic vagotomy prevented the increase in the gastric dopamine content and D2 receptor expression and improved gastric dysmotility in 6-OHDA rats. Conclusion Dopaminergic deficiency in the SN results in impaired gastric motility, possibly as a result of the enhanced activity of dopamine system and reduced Ach in gastric tissue. The vagus nerve plays an important role in peripheral gastric motility disorder.

Journal ArticleDOI
TL;DR: The effects of ageing on the excitability of soleus homonymous Ia afferents and corticospinal pathways during bipedal upright standing are investigated.
Abstract: Aim This study investigated the effects of ageing on the excitability of soleus homonymous Ia afferents and corticospinal pathways during bipedal upright standing. Methods The input–output relations for the Hoffmann (H) reflex and motor-evoked potential (MEP) were computed for the soleus in response to electrical nerve stimulation and transcranial magnetic stimulation, respectively, in young (n = 16) and elderly (n = 16) adults. In subsets of subjects, the input–output relations were compared between normal and supported upright standing, and corticomotoneuronal excitability was assessed during upright standing with an H-reflex conditioning method. For the H-reflex and MEP threshold, maximal amplitude (Hmax, MEPmax) and the slope of the input–output relation (Hslope, MEPslope) were measured and normalized to the corresponding M-wave value. Results In normal standing, the Hmax/Mmax [mean (SD); young: 48.3 (14.2)%; elderly: 17.3 (6.4)%] and Hslope/Mslope were significantly (P < 0.05) lower in elderly than in young adults, whereas the MEPmax/Mmax [young: 13.6 (7.5)%; elderly: 24.5 (12.8)%] and MEPslope/Mslope were greater in elderly adults (P < 0.05). The Hslope/Mslope and MEPslope/Mslope decreased and increased, respectively, from supported to normal standing for both age groups but more so in elderly adults. Furthermore, the conditioned H reflex was greater (P < 0.05) in elderly [175.1 (34.3)%] than in young adults [141.8 (29.8)%] during normal standing. Conclusion This is the first study that clearly indicates lower efficacy of Ia afferents to discharge spinal motor neurones accompanied by greater corticospinal excitability in elderly adults, suggesting an increased contribution of the descending drive in controlling soleus activity during upright standing with ageing.

Journal ArticleDOI
TL;DR: To investigate the influence of lifelong endurance running on the satellite cell pool of type I and type II fibres in healthy human skeletal muscle, a large number of mice were fitted with EMTs to study the effects of running on these cells.
Abstract: Aim To investigate the influence of lifelong endurance running on the satellite cell pool of type I and type II fibres in healthy human skeletal muscle. Methods Muscle biopsies were collected from 15 healthy old trained men (O-Tr) who had been running 43 ± 16 (mean ± SD) kilometres a week for 28 ± 9 years. Twelve age-matched untrained men (O-Un) and a group of young trained and young untrained men were recruited for comparison. Frozen sections were immunohistochemically stained for Pax7, type I myosin and laminin, from which fibre area, the number of satellite cells, and the relationship between these variables were determined. Results In O-Un and O-Tr, type II fibres were smaller and contained fewer satellite cells than type I fibres. However, when expressed relative to fibre area, the difference in satellite cell content between fibre types was eliminated in O-Tr, but not O-Un. A strong positive relationship between fibre size and satellite cell content was detected in trained individuals. In line with a history of myofibre repair, a greater number of fibres with centrally located myonuclei were detected in O-Tr. Conclusion Lifelong endurance training (i) does not deplete the satellite cell pool and (ii) is associated with a similar density of satellite cells in type I and II fibres despite a failure to preserve the equal fibre type distribution of satellite cells observed in young individuals. Taken together, these data reveal a differential regulation of satellite cell content between fibre types, in young and old healthy men with dramatically different training histories.

Journal ArticleDOI
TL;DR: The purpose of this study was to investigate the relative roles of circulatory and muscle metabolic mechanisms by which prolonged low‐intensity exercise training alters regional muscle VO2.
Abstract: AIM: It is an ongoing discussion the extent to which oxygen delivery and oxygen extraction contribute to an increased muscle oxygen uptake during dynamic exercise. It has been proposed that local muscle factors including the capillary bed and mitochondrial oxidative capacity play a large role in prolonged low-intensity training of a small muscle group when the cardiac output capacity is not directly limiting. The purpose of this study was to investigate the relative roles of circulatory and muscle metabolic mechanisms by which prolonged low-intensity exercise training alters regional muscle VO2 .METHODS: In nine healthy volunteers (seven males, two females), haemodynamic and metabolic responses to incremental arm cycling were measured by the Fick method and biopsy of the deltoid and triceps muscles before and after 42 days of skiing for 6 h day(-1) at 60% max heart rate.RESULTS: Peak pulmonary VO2 during arm crank was unchanged after training (2.38 ± 0.19 vs. 2.18 ± 0.2 L min(-1) pre-training) yet arm VO2 (1.04 ± 0.08 vs. 0.83 ± 0.1 L min(1) , P < 0.05) and power output (137 ± 9 vs. 114 ± 10 Watts) were increased along with a higher arm blood flow (7.9 ± 0.5 vs. 6.8 ± 0.6 L min(-1) , P < 0.05) and expanded muscle capillary volume (76 ± 7 vs. 62 ± 4 mL, P < 0.05). Muscle O2 diffusion capacity (16.2 ± 1 vs. 12.5 ± 0.9 mL min(-1) mHg(-1) , P < 0.05) and O2 extraction (68 ± 1 vs. 62 ± 1%, P < 0.05) were enhanced at a similar mean capillary transit time (569 ± 43 vs. 564 ± 31 ms) and P50 (35.8 ± 0.7 vs. 35 ± 0.8), whereas mitochondrial O2 flux capacity was unchanged (147 ± 6 mL kg min(-1) vs. 146 ± 8 mL kg min(-1) ).CONCLUSION: The mechanisms underlying the increase in peak arm VO2 with prolonged low-intensity training in previously untrained subjects are an increased convective O2 delivery specifically to the muscles of the arm combined with a larger capillary-muscle surface area that enhance diffusional O2 conductance, with no apparent role of mitochondrial respiratory capacity.

Journal ArticleDOI
TL;DR: The hypothesis that iron overload can lead to cardiac mitochondrial dysfunction and that mitochondrial calcium uniporter (MCU) plays a major role for cardiac mitochondrial iron uptake under iron‐overload condition is tested.
Abstract: Aim Iron overload in the heart can lead to iron-overload cardiomyopathy and cardiac arrhythmia. In the past decades, growing evidence has suggested that cardiac mitochondrial dysfunction is associated with the development of cardiac dysfunction and lethal arrhythmias. Despite these facts, the effect of iron overload on cardiac mitochondrial function is still unclear. In this study, we determined the effects of iron overload on the cardiac mitochondrial function and the routes of cardiac mitochondrial iron uptake. We tested the hypothesis that iron overload can lead to cardiac mitochondrial dysfunction and that mitochondrial calcium uniporter (MCU) plays a major role for cardiac mitochondrial iron uptake under iron-overload condition. Cardiac mitochondrial function was assessed via the determination of mitochondrial swelling, mitochondrial reactive oxygen species (ROS) production and mitochondrial membrane potential changes. Methods Isolated cardiac mitochondria from male Wistar rats were used in this study. To determine the routes for cardiac mitochondrial iron uptake, isolated mitochondria were exposed to MCU blocker (Ru360), mitochondrial permeability transition pore (mPTP) blocker (cyclosporin A) and an iron chelator (deferoxamine). Results We found that (i) iron overload caused cardiac mitochondrial dysfunction, indicated by increased ROS production, mitochondrial membrane depolarization and mitochondrial swelling; and (ii) only MCU blocker completely protected cardiac mitochondrial dysfunction caused by iron overload. Conclusions These findings strongly suggest that MCU could be the major route for iron uptake into cardiac mitochondria. The inhibition of MCU could be the novel pharmacological intervention for preventing iron-overload cardiomyopathy.

Journal ArticleDOI
TL;DR: The effects of acylated ghrelin, a potential agent for treating cancer cachexia, on inhibiting apoptotic signalling in doxorubicin‐treated skeletal muscle is examined to examine the GHSR‐1a signalling dependency of the effects of gh Relin.
Abstract: Aim Doxorubicin, a potent chemotherapeutic drug, has been demonstrated previously as an inducer of apoptosis in muscle cells. Extensive induction of apoptosis may cause excessive loss of muscle cells and subsequent functional decline in skeletal muscle. This study examined the effects of acylated ghrelin, a potential agent for treating cancer cachexia, on inhibiting apoptotic signalling in doxorubicin-treated skeletal muscle. Unacylated ghrelin, a form of ghrelin that does not bind to GHSR-1a, is also employed in this study to examine the GHSR-1a signalling dependency of the effects of ghrelin. Methods Adult C57BL/6 mice were randomly assigned to saline control (CON), doxorubicin (DOX), doxorubicin with treatment of acylated ghrelin (DOX+Acylated Ghrelin) and doxorubicin with treatment of unacylated ghrelin (DOX+Unacylated Ghrelin). Mice in all groups that involved DOX were intraperitoneally injected with 15 mg of doxorubicin per kg body weight, whereas mice in CON group received saline as placebo. Gastrocnemius muscle tissues were harvested after the experimental period for analysis. Results The elevation of apoptotic DNA fragmentation and number of TUNEL-positive nuclei were accompanied with the upregulation of Bax in muscle after exposure to doxorubicin, but all these changes were neither seen in the muscle treated with acylated ghrelin nor unacylated ghrelin after doxorubicin exposure. Protein abundances of autophagic markers including LC3 II-to-LC3 I ratio, Atg12-5 complex, Atg5 and Beclin-1 were not altered by doxorubicin but were upregulated by the treatment of either acylated or unacyated ghrelin. Histological analysis revealed that the amount of centronucleated myofibres was elevated in doxorubicin-treated muscle while muscle of others groups showed normal histology. Conclusions Collectively, our data demonstrated that acylated ghrelin administration suppresses the doxorubicin-induced activation of apoptosis and enhances the cellular signalling of autophagy. The treatment of unacylated ghrelin has similar effects as acylated ghrelin on apoptotic and autophagic signalling, suggesting that the effects of ghrelin are probably mediated through a signalling pathway that is independent of GHSR-1a. These findings were consistent with the hypothesis that acylated ghrelin inhibits doxorubicin-induced upregulation of apoptosis in skeletal muscle while treatment of unacylated ghrelin can achieve similar effects as the treatment of acylated ghrelin. The inhibition of apoptosis and enhancement of autophagy induced by acylated and unacylated ghrelin might exert myoprotective effects on doxorubicin-induced toxicity in skeletal muscle.

Journal ArticleDOI
Tatsuya Usui1, A. Naruo1, Muneyoshi Okada1, Y. Hayabe1, Hideyuki Yamawaki1 
TL;DR: This work investigated the mechanisms by which BDNF regulates angiogenesis with focusing on ROS in cultured human vascular endothelial cells (ECs) by studying the effects of reactive oxygen species (ROS) generation on BDNF levels.
Abstract: Aim Brain-derived neurotrophic factor (BDNF), a major type of neurotrophins, plays a role in the regulation of synaptic function Recent studies suggest that BDNF promotes angiogenesis through its specific receptor, tropomyosin-related kinase B (TrkB) However, the detailed mechanisms for this still remain to be determined Reactive oxygen species (ROS) generation contributes to the regulation of angiogenesis Thus, we investigated the mechanisms by which BDNF regulates angiogenesis with focusing on ROS in cultured human vascular endothelial cells (ECs) Methods and results In human umbilical vein ECs, BDNF increased ROS generation as measured fluorometrically using 2′ 7′-dichlorofluorescein diacetate as well as NADPH oxidase (NOX) activity as measured by lucigenin assay BDNF-induced ROS generation and NOX activity were inhibited by K252a, a TrkB receptor inhibitor BDNF induced phosphorylation of p47 phox, a regulatory component of NOX, which was inhibited by K252a as measured by Western blotting BDNF increased angiogenic tube formation in ECs, which was completely inhibited by K252a or gp91ds-tat, a NOX inhibitor BDNF caused Akt phosphorylation in ECs, which was inhibited by K252a or gp91ds-tat Conclusion The present results for the first time demonstrate that BDNF induces NOX-derived ROS generation through activation of p47 phox in a TrkB receptor-dependent manner, which leads to the promotion of angiogenic tube formation possibly via Akt activation