scispace - formally typeset
Search or ask a question

Showing papers in "Advances in Meteorology in 2018"


Journal ArticleDOI
TL;DR: By using the prediction model developed in this study to predict the occurrence of heavy rain damage for each administrative region, the authors can greatly reduce the damage through proactive disaster management.
Abstract: Prediction models of heavy rain damage using machine learning based on big data were developed for the Seoul Capital Area in the Republic of Korea. We used data on the occurrence of heavy rain damage from 1994 to 2015 as dependent variables and weather big data as explanatory variables. The model was developed by applying machine learning techniques such as decision trees, bagging, random forests, and boosting. As a result of evaluating the prediction performance of each model, the AUC value of the boosting model using meteorological data from the past 1 to 4 days was the highest at 95.87% and was selected as the final model. By using the prediction model developed in this study to predict the occurrence of heavy rain damage for each administrative region, we can greatly reduce the damage through proactive disaster management.

51 citations


Journal ArticleDOI
TL;DR: In this article, the effects of landscape design elements of pavement materials, greenery, and water bodies on urban microclimate and thermal comfort in a high-rise residential area in the tropic climate of Singapore were quantitatively investigated.
Abstract: A climate-responsive landscape design can create a more livable urban microclimate with adequate human comfortability. This paper aims to quantitatively investigate the effects of landscape design elements of pavement materials, greenery, and water bodies on urban microclimate and thermal comfort in a high-rise residential area in the tropic climate of Singapore. A comprehensive field measurement is undertaken to obtain real data on microclimate parameters for calibration of the microclimate-modeling software ENVI-met 4.0. With the calibrated ENVI-met, seven urban landscape scenarios are simulated and their effects on thermal comfort as measured by physiologically equivalent temperature (PET) are evaluated. It is found that the maximum improvement of PET reduction with suggested landscape designs is about 12°C, and high-albedo pavement materials and water bodies are not effective in reducing heat stress in hot and humid climate conditions. The combination of shade trees over grass is the most effective landscape strategy for cooling the microclimate. The findings from the paper can equip urban designers with knowledge and techniques to mitigate urban heat stress.

51 citations


Journal ArticleDOI
TL;DR: In this article, the authors used satellite remote sensing-based vegetation index to estimate crop water demands or crop evapotranspiration ( ) at different scales using satellite Remote Sensing-Based vegetation index (RSV index).
Abstract: Irrigation water is limited and scarce in many areas of the world, including Comarca Lagunera, Mexico Thus better estimations of irrigation water requirements are essential to conserve water The general objective was to estimate crop water demands or crop evapotranspiration ( ) at different scales using satellite remote sensing-based vegetation index The study was carried out in northern Mexico (Comarca Lagunera) during four growing seasons Six, eleven, three, and seven clear Landsat images were acquired for 2013, 2014, 2015, and 2016, respectively, for the analysis The results showed that was low at initial and early development stages, while was high during mid-season and harvest stages These results are not new but give us confidence in the rest of our results Daily maps helped to explain the variability of crop water use during the growing season Based on the results we can conclude that maps developed from remotely sensed multispectral vegetation indices are a useful tool for quantifying crop water consumption at regional and field scales Using maps at the field scale, farmers can supply appropriate amounts of irrigation water corresponding to each growth stage, leading to water conservation

42 citations


Journal ArticleDOI
TL;DR: The performance of IMERG V05B precipitation products was systematically evaluated using 542 precipitation gauges at multiple spatio-temporal scales from March 2014 to February 2017 over China.
Abstract: The comprehensive assessment of the Integrated Multi-satellitE Retrievals for the Global Precipitation Measurement (IMERG) V05B is important for benchmarking the product’s continued improvement and future development. The performance of IMERG V05B precipitation products was systematically evaluated using 542 precipitation gauges at multiple spatiotemporal scales from March 2014 to February 2017 over China. Moreover, IMERG V05B was compared with IMERG V04A, the Tropical Rainfall Measuring Mission (TRMM) 3B42, and the Climate Prediction Center Morphing technique (CMORPH)-CRT in this study. Categorical verification techniques and statistical methods are used to quantify their performance. Results illustrate the following. (1) Except for IMERG V04A’s severe underestimation over the Tibetan Plateau (TP) and Xinjiang (XJ) with high negative relative biases (RBs) and CMORPH-CRT’s overestimation over XJ with high positive RB, the four satellite-based precipitation products generally capture the same spatial patterns of precipitation over China. (2) At the annual scale over China, the IMERG products do not show an advantage over its predecessor (TRMM 3B42) in terms of RMSEs, RRMSEs, and Rs; meanwhile, the performance of IMERG products is worse than TRMM 3B42 in spring and summer according to the RMSE, RRMSE, and R metrics. Between the two IMERG products, IMERG V05B shows the anticipated improvement (over IMERG V04A) with a decrease in RMSE from 0.4496 to 0.4097 mm/day, a decrease of RRMSE from 16.95% to 15.44%, and an increase of R from 0.9689 to 0.9759 during the whole study period. Similar results are obtained at the seasonal scale. Among the four satellite products, CMORPH-CRT shows the worst seasonal performance with the highest RMSE (0.6247 mm/day), RRMSE (23.55%), and lowest R (0.9343) over China. (3) Over XJ and TP, IMERG V05B clearly improves the strong underestimation of precipitation in IMERG V04A with the RBs of 5.2% vs. −21.8% over XJ, and 2.78% vs. −46% over TP. Results at the annual scale are similar to those obtained at the seasonal scale, except for summer results over XJ. While, over the remaining subregions, the two IMERG products have a close performance; meanwhile, IMERG V04A slightly improves IMERG V05B’s overestimation according to RBs (except for HN) at the annual scale. However, all four products are unreliable over XJ at both an annual and seasonal scale. (4) Across all products, TRMM 3B42 best reproduces the probability density function (PDF) of daily precipitation intensity. (5) According to the categorical verification technique in this study, both IMERG products yield better results for the detection of precipitation events on the basis of probability of detection (POD) and critical success index (CSI) categorical evaluations compared to TRMM 3B42 and CMORPH-CRT over China and across most of the subregions. However, all four products have room for further improvement, especially in high-latitude and dry climate regions. These findings provide valuable feedback for both IMERG algorithm developers and data set users.

42 citations


Journal ArticleDOI
TL;DR: In this article, seasonal and annual trends of rainfall in the Lake Tana basin (LTB) and their teleconnections with global sea surface temperatures (SSTs) over the period between 1979 and 2015 were explored.
Abstract: The impacts of climate change and climate variability on human life have led the scientific community to monitor the behavior of weather and climate variables at different spatial and temporal scales. This paper explores seasonal and annual trends of rainfall in the Lake Tana basin (LTB) and their teleconnections with global sea surface temperatures (SSTs) over the period between 1979 and 2015. The nonparametric Mann–Kendall test and Sen’s slope estimate are applied to the rainfall data collected from the National Meteorology Agency (NMA) of Ethiopia for detecting and estimating rainfall trends. Additionally, Pearson’s correlation coefficient method is used to determine the effect of SST variations on rainfall. The assessment of rainfall trends indicates that the amount of annual rainfall in the Lake Tana basin is increasing, but the rate of increase is not statistically significant. Seasonal analysis reveals that the smallest amount of rainfall occurs in the Bega season, and this season is getting drier with time. However, the analysis indicates that the other two seasons (Belg and Kiremt) are becoming wetter. The rainfall in Kiremt is increasing significantly (significant at the level) in Debre Tabor station with a rate of 10.20 mm/year. Besides, 78.1% of the total annual rainfall in the basin occurs during this rainy (Kiremt) season, whereas Bega and Belg contribute some 9.4% and 12.5%, respectively. Furthermore, the correlation analysis of rainfall and SSTs indicates that rainfall of the LTB is highly affected by the variations of SSTs.

40 citations


Journal ArticleDOI
TL;DR: In this article, the authors evaluated the performance of temperature-based models for estimating global solar radiation and gridded databases (AgCFSR, AgMERRA, NASA/POWER, and XAVIER) as alternative ways for filling gaps in historical weather series (1980-2009) in Brazil and to project climate change scenarios based on measured and girded weather data.
Abstract: The quantification of climate change impacts on several human activities depends on reliable weather data series, without gaps and long enough to build up future climate. Based on that, this study aimed to evaluate the performance of temperature-based models for estimating global solar radiation and gridded databases (AgCFSR, AgMERRA, NASA/POWER, and XAVIER) as alternative ways for filling gaps in historical weather series (1980–2009) in Brazil and to project climate change scenarios based on measured and gridded weather data. Projections for mid- and end-of-century periods (2040–2069 and 2070–2099), using seven global climate models from CMIP5 under intermediate (RCP4.5) and high (RCP8.5) emission scenarios, were performed. The Bristow–Campbell model was the one that best estimated solar radiation, whereas the XAVIER gridded database was the closest to observed weather data. Future climate projections, under RCP4.5 and RCP8.5 scenarios, as expected, showed warmer conditions for all scenarios over Brazil. On the contrary, rainfall projections are more uncertain. Despite that, the rainfall amounts will be reduced in the North-Northeast region and increased in Southern Brazil. No significant differences between projections using the observed and XAVIER gridded database were observed; therefore, such a database showed to be reliable for both to fill gaps and to generate climate change scenarios.

40 citations


Journal ArticleDOI
TL;DR: In this article, the authors used a comprehensive set of statistical metrics to investigate the historical trends in averages and extremes of rainfall and temperature in Sri Lanka, and they used a modified seasonal Mann-Kendall test for the seasonal data.
Abstract: In this study, we used a comprehensive set of statistical metrics to investigate the historical trends in averages and extremes of rainfall and temperature in Sri Lanka. The data consist of 55 years (1961–2015) of daily rainfall, maximum temperature (Tmax), and minimum temperature (Tmin) records from 20 stations scattered throughout Sri Lanka. The linear trends were analyzed using the nonparametric Mann–Kendall test and Sen–Theil regression. The prewhitening method was first used to remove autocorrelation from the time series, and the modified seasonal Mann–Kendall test was then applied for the seasonal data. The results show that, during May, 15% of the stations showed a significant decrease in wet days, which may be due to the delayed southwest monsoon (SWM) to Sri Lanka. A remarkable increase in the annual average temperature of Tmin and Tmax was observed as 70% and 55% of the stations, respectively. For the entire period, 80% of the stations demonstrated statistically significant increases of Tmin during June and July. The daily temperature range (DTR) exhibited a widespread increase at the stations located within the southwestern coast region of Sri Lanka. Although changes in global climate, teleconnections, and local deforestation in recent decades at least partially influence the trends observed in Sri Lanka, a formal trend attribution study should be conducted.

36 citations


Journal ArticleDOI
TL;DR: In this paper, the authors assess trends in extremes of surface temperature and precipitation through the application of the World Meteorological Organization's (WMO) Expert Team on Climate Change Detection and Indices (ETCCDI) on datasets representing three agroecological zones in Southern Ethiopia.
Abstract: The study aims to assess trends in extremes of surface temperature and precipitation through the application of the World Meteorological Organization’s (WMO) Expert Team on Climate Change Detection and Indices (ETCCDI) on datasets representing three agroecological zones in Southern Ethiopia. The indices are applied to daily temperature and precipitation data. Nonparametric Sen’s slope estimator and Mann–Kendall’s trend tests are used to detect the magnitude and statistical significance of changes in extreme climate, respectively. All agroecological zones (AEZs) have experienced both positive and negative trends of change in temperature extremes. Over three decades, warmest days, warmest nights, and coldest nights have shown significantly increasing trends except in the midland AEZ where warmest days decreased by 0.017°C/year ( ). Temperature extreme’s magnitude of change is higher in the highland AEZ and lower in the midland AEZ. The trend in the daily temperature range shows statistically significant decrease across AEZs ( ). A decreasing trend in the cold spell duration indicator was observed in all AEZs, and the magnitude of change is 0.667 days/year in lowland ( ), 2.259 days/year in midland, and 1 day/year in highland ( ). On the contrary, the number of very wet days revealed a positive trend both in the midland and highland AEZs ( ). Overall, it is observed that warm extremes are increasing while cold extremes are decreasing, suggesting considerable changes in the AEZs.

36 citations


Journal ArticleDOI
TL;DR: In this paper, the applicability of Global Precipitation Measurement (GPM) IMERG products at different time resolutions in comparison to ground-measured data was evaluated. But, the GPM-M data in the range >100 mm were overestimated.
Abstract: Accurate remote-sensed precipitation data are crucial to the effective monitoring and analysis of floods and climate change. The Global Precipitation Measurement (GPM) satellite product offers new options for the global study of precipitation. This paper evaluates the applicability of GPM IMERG products at different time resolutions in comparison to ground-measured data. Based on precipitation data from 107 meteorological stations in the Beijing-Tianjin-Hebei region, GPM products were analysed at three timescales: half-hourly (GPM-HH), daily (GPM-D), and monthly (GPM-M). We use a cumulative distribution function (CDF) model to correct GPM-D and GPM-M products to analyse temporal and spatial distributions of precipitation. We came to the following conclusions: (1) The GPM-M product is strongly correlated with ground station data. Based on five evaluation indexes, NRMSE (Normalized Root Mean Square Error), NSE (Nash-Sutcliffe), FAR (False Alarm Ratio), UR (Underreporting Rate), and CSI (Critical Success Index), the monthly GPM products showed the best performance, better than GPM-HH products and GPM-D products. (2) The performance of GPM products in summer and autumn was better than in winter and spring. However, the GPM satellite’s precision in undulating terrain was poor, which could easily lead to serious errors. (3) CDF models were successfully used to modify GPM-D and GPM-M products and improve their accuracy. (4) The range of 0–100 mm precipitation could be corrected best, but the GPM-M products were underestimated. Corrected GPM-M data in the range >100 mm were overestimated. According to this analysis, the GPM IMERG Final Run products at daily and monthly timescales have good detection ability and can provide data support for long-time series analyses in the Beijing-Tianjin-Hebei region.

35 citations


Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper implemented a statistical analysis to study the spatial and temporal variability in precipitation in the upper reaches of the Hongshui River basin (UHRB), southwestern China, by analyzing time series of daily precipitation from 18 weather stations during the period of 1959 to 2015.
Abstract: The statistical characteristics of precipitation play important roles not only in flood and drought risk assessments but also in water resource management. This paper implements a statistical analysis to study the spatial and temporal variability in precipitation in the upper reaches of the Hongshui River basin (UHRB), southwestern China, by analysing time series of daily precipitation from 18 weather stations during the period of 1959 to 2015. To detect precipitation concentrations and the associated patterns, three indices, the precipitation concentration index (PCI), precipitation concentration degree (PCD), and precipitation concentration period (PCP), were used. The relationships between the precipitation concentration indices (PCI, PCD, and PCP) and geographic variables (latitude, longitude, and elevation), large-scale atmospheric circulation indices, and summer monsoon indices were investigated to identify specific dependencies and spatial patterns in the precipitation distribution and concentration. The results show that high PCI values were mainly observed in the northeastern portion of the basin, whereas low PCI values were mainly detected in the southwest. The Mann-Kendall test results demonstrate that the majority of the UHRB is characterized by nonsignificant trends in the PCI, PCD, and PCP from 1959 to 2015. The PCP results reveal that rainfall in the UHRB mainly occurs in summer months, and the rainy season arrives earlier in the eastern UHRB than in the western UHRB. Additionally, the PCD results indicate that the rainfall in the western UHRB is more dispersed throughout the year than that in the eastern UHRB. Compared with other geographical factors, longitude is the most important variable that governs the spatial distribution and variations in annual precipitation and the precipitation concentration indices. Due to a combination of topography, the Indian subtropical high, and monsoon weakening, precipitation may be more concentrated in one period, especially in the eastern part of the basin, which increases the risk of drought.

34 citations


Journal ArticleDOI
Zi Tang1, Shizhen Bai1, Changbo Shi1, Lin Liu1, Xiaohong Li1 
TL;DR: In this paper, a bottom-up approach was adopted to estimate the spatiotemporal change of CO2 emissions of the tourism industry in China and its 31 provinces over the period 2000-2015.
Abstract: The rapid development of the tourism industry has been accompanied by an increase in CO2 emissions and has a certain degree of impact on climate change. This study adopted the bottom-up approach to estimate the spatiotemporal change of CO2 emissions of the tourism industry in China and its 31 provinces over the period 2000–2015. In addition, the decoupling index was applied to analyze the decoupling effects between tourism-related CO2 emissions and tourism economy from 2000 to 2015. The results showed that the total CO2 emissions of the tourism industry rose from 37.95 Mt in 2000 to 100.98 Mt in 2015 with an average annual growth rate of 7.1%. The highest CO2 emissions from the tourism industry occurred in eastern coastal China, whereas the least CO2 emissions were in the west of China. Additionally, the decoupling of CO2 emissions from economic growth in China’s tourism industry had mainly gone through the alternations of negative decoupling and weak decoupling. The decoupling states in most of the Chinese provinces were desirable during the study period. This study may serve as a scientific reference regarding decision-making in the sustainable development of the tourism industry in China.

Journal ArticleDOI
TL;DR: In this article, the capability of 12 solar radiation models based on meteorological data obtained from 21 meteorological stations in China was evaluated, and the results showed that the estimated and measured daily had statistically significant correlations ( ) for all the 12 models in 7 subzones of China.
Abstract: Complete and accurate global solar radiation ( ) data at a specific region are crucial for regional climate assessment and crop growth modeling. The objective of this paper was to evaluate the capability of 12 solar radiation models based on meteorological data obtained from 21 meteorological stations in China. The results showed that the estimated and measured daily had statistically significant correlations ( ) for all the 12 models in 7 subzones of China. The Bahel model showed the best performance for daily estimation among the sunshine-based models, with average of 0.910, average RMSE of 2.306 MJ m−2 d−1, average RRMSE of 17.3%, average MAE of 1.724 MJ m−2 d−1, and average NS of 0.895, respectively. The Bristow-Campbell (BC) model showed the best performance among the temperature-based models, with average of 0.710, average RMSE of 3.952 MJ m−2 d−1, average RRMSE of 29.5%, average MAE of 2.958 MJ m−2 d−1, and average NS of 0.696, respectively. On monthly scale, Ogelman model showed the best performance among the sunshine-based models, with average RE of 5.66%. The BC model showed the best performance among the temperature-based models, with average RE of 8.26%. Generally, the sunshine-based models were more accurate than the temperature-based models. Overall, the Bahel model is recommended to estimate daily , Ogelman model is recommended to estimate monthly average daily in China when the sunshine duration is available, and the BC model is recommended to estimate both daily and monthly average daily when only temperature data are available.

Journal ArticleDOI
TL;DR: In this article, the authors analyzed precipitation concentration rates in different regions of Bangladesh using the precipitation concentration index (PCI) and the inverse distance weighting method and found that significant changes in the precipitation occurred during the period of 1980-2011.
Abstract: Precipitation concentration is an important component of climate, and an unbalanced distribution of precipitation can yield excess or scarcity of water resources, which in turn can influence plant growth, flood risk, and water resource use. The precipitation concentration index (PCI) is a well-known indicator for the measurement of temporal precipitation in a short or long area. The purpose of this study was to analyze precipitation concentration rates in different regions of Bangladesh using the precipitation concentration index (PCI) and the inverse distance weighting method. In this study, the rainfall data from 30 meteorological observatory stations across Bangladesh were collected for the period 1980 to 2011. We defined periods of varying lengths (i.e., annual, supraseasonal, seasonal, and three- and two-month rainfall concentrations) and compared their PCI values. The results showed that precipitation concentrations were mostly irregular when rainfall was concentrated within two to four months of the year. Higher PCI values were mainly identified in the eastern region and have strong seasonal influences, whereas lower PCI values were mostly observed in the northern region. The analyses of periodic variation and precipitation in Bangladesh generally follow through the SW–NE direction due to the summer monsoon, while during the winter monsoon, they follow the N–S direction where JAS and JFM showed higher and lower PCI values. We observed variations in PCI among different regions using the Kruskal–Wallis test of the mean PCI on a decadal scale (1980–1989, 1990–1999, and 2000–2011). The result showed that significant changes in the precipitation occurred during the period of 1980–2011. At a two-month scale, significant changes were identified during transition periods where PCI values were lower from 2000 to 2011 than those in the earlier decades.

Journal ArticleDOI
TL;DR: In this article, a sensitivity study of the performance of the Weather Research and Forecasting regional model (WRF, version 3.7) to the use of different microphysics, cumulus, and boundary layer parameterizations for short and medium-term precipitation forecast is conducted in the Central Andes of Peru.
Abstract: A sensitivity study of the performance of the Weather Research and Forecasting regional model (WRF, version 3.7) to the use of different microphysics, cumulus, and boundary layer parameterizations for short- and medium-term precipitation forecast is conducted in the Central Andes of Peru. Lin-Purdue, Thompson, and Morrison microphysics schemes were tested, as well as the Grell–Freitas, Grell 3d, and Betts–Miller–Janjic cumulus parameterizations. The tested boundary layer schemes were the Yonsei University and Mellor–Yamada–Janjic. A control configuration was defined, using the Thompson, Grell–Freitas, and Yonsei University schemes, and a set of numerical experiments is made, using different combinations of parameterizations. Data from 19 local meteorological stations and regional and global gridded were used for verification. It was concluded that all the configurations overestimate precipitation, but the one using the Morrison microphysical scheme had the best performance, based on the indicators of bias ( ) and root mean square error (RMSE). It is recommended not to use the Betts–Miller–Janjic scheme in this region for low resolution domains. Categorical forecast verification of the occurrence of rainfall as a binary variable showed detection rates higher than 85%. According to this criterion, the best performing configuration was the combination of Betts–Miller–Janjic and Morrison. Spatial verification showed that, even if all the configurations overestimated precipitation in some degree, spatial patterns of rainfall match the TRMM and PISCO rainfall data. Morrison’s microphysics scheme shows the best results, and consequently, this configuration is recommended for short- and medium-term rainfall forecasting tasks in the Central Andes of Peru and particularly in the Mantaro basin. The results of a special sensitivity experiment showed that the activation or not of cumulus parametrization for the domain of 3 km resolution is not relevant for the precipitation forecast in the study region.

Journal ArticleDOI
TL;DR: In this article, the authors present recent developments and applications of surface renewal for evapotranspiration (ET) measurements, as well as a new model suggests that the SR method could be exempted from calibration by measuring additional micrometeorological variables.
Abstract: The estimation of evapotranspiration (ET) is essential for meteorological modeling of surface exchange processes, as well as for the agricultural practice of irrigation management. Hitherto, a number of methods for estimation of ET at different temporal scales and climatic conditions are constantly under investigation and improvement. One of these methods is surface renewal (SR). Therefore, the premise of this review is to present recent developments and applications of SR for ET measurements. The SR method is based on estimating the turbulent exchange of sensible heat flux between plant canopy and atmosphere caused by the instantaneous replacement of air parcels in contact with the surface. Additional measurements of net radiation and soil heat flux facilitate extracting ET using the shortened energy balance equation. The challenge, however, is the calibration of SR results against direct sensible heat flux measurements. For the classical SR method, only air temperature measured at high frequency is required. In addition, a new model suggests that the SR method could be exempted from calibration by measuring additional micrometeorological variables. However, further improvement of the SR method is required to provide improved results in the future.

Journal ArticleDOI
TL;DR: In this paper, the indoor air quality of the classrooms existing in university buildings in Turkey was analyzed by means of correlation and regression analysis in SPSS 17 statistical program and the results obtained from the present work were interpreted by comparing them with the standards of different countries.
Abstract: This study was carried out in order to determine the indoor air quality of the classrooms existing in university (Turkey). Relative humidity, temperature, carbon dioxide, radon, and particulate matters (PM0.5, PM1.0, PM2.5, PM5.0, and PM10) were taken into account as the parameters of indoor air quality measurements. The results obtained from the present work were interpreted by comparing them with the standards of different countries. The relations between all parameters were statistically examined by means of correlation and regression analysis in SPSS 17 statistical program. As a result, it was observed that indoor temperature was lower than the standards, yet carbon dioxide and PM values were higher than the upper limit, but relative humidity level was within comfort conditions. The average indoor radon concentrations were found to be below the recommended reference levels for International Commission on Radiological Protection (ICRP), yet it was seen that the results were relatively higher in comparison with the worldwide values. In addition, it was determined that there was a meaningful relation between outdoor relative humidity, indoor relative humidity, and particulate matters in different diameters. Some solutions were suggested for the treatment of the indoor air quality for each parameter.

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper investigated two downscaling algorithms based on multiple linear regression (MLR) and the Geographically Weighted Regression (GWR), respectively, to downscale annual and monthly precipitation obtained from the Global Precipitation Measurement (GPM) mission in Hengduan Mountains, Southwestern China, from 10.
Abstract: As a fundamental component in material and energy circulation, precipitation with high resolution and accuracy is of great significance for hydrological, meteorological, and ecological studies. Since satellite measured precipitation is often too coarse for practical applications, it is essential to develop spatial downscaling algorithms. In this study, we investigated two downscaling algorithms based on the Multiple Linear Regression (MLR) and the Geographically Weighted Regression (GWR), respectively. They were employed to downscale annual and monthly precipitation obtained from the Global Precipitation Measurement (GPM) Mission in Hengduan Mountains, Southwestern China, from 10 km × 10 km to 1 km × 1 km. Ground observations were then used to validate the accuracy of downscaled precipitation. The results showed that GWR performed much better than MLR to regress precipitation on Normalized Difference Vegetation Index (NDVI) and Digital Elevation Model (DEM); coefficients of GWR models showed strong spatial nonstationarity, but the spatial mean standardized coefficients were very similar to standardized coefficients of MLR in terms of intra-annual patterns: generally NDVI was positively related to precipitation when monthly precipitation was under 166 mm; DEM was negatively related to precipitation, especially in wet months like July and August; contribution of DEM to precipitation was greater than that of NDVI; residuals’ correction was indispensable for the MLR-based algorithm but should be removed from the GWR-based algorithm; the GWR-based algorithm rather than the MLR-based algorithm produced more accurate precipitation than original GPM precipitation. These results indicated that GWR is a promising method in satellite precipitation downscaling researches and needed to be further studied.

Journal ArticleDOI
TL;DR: In this paper, human-biometeorological studies shed light on the effect of summertime air temperature on human health especially in cities where the warming tendency is exacerbated by urban heat island.
Abstract: Increasing summertime air temperature deteriorates human health especially in cities where the warming tendency is exacerbated by urban heat island. Human-biometeorological studies shed light on th ...

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors studied the characteristics of SO2 distribution and variation over Beijing-Tianjin-Hebei (BTH) region and derived spatial and temporal variations for a long term (2006-2017) over BTH derived from OMI PBL SO2 products.
Abstract: Sulfur dioxide (SO2) in the planetary boundary layer (PBL) as a kind of gaseous pollutant has a strong effect regarding atmospheric environment, air quality, and climate change. As one of the most polluted regions in China, air quality in Beijing-Tianjin-Hebei (BTH) region has attracted more attention. This paper aims to study the characteristics of SO2 distribution and variation over BTH. Spatial and temporal variations for a long term (2006–2017) over BTH derived from OMI PBL SO2 products were discussed. The temporal trends confirm that the SO2 loading falls from average 0.88 DU to 0.16 DU in the past 12 years. Two ascending fluctuations in 2007 and 2011 appeared to be closely related to the economic stimulus of each five-year plan (FYP). The spatial analysis indicates an imbalanced spatial distribution pattern, with higher SO2 level in the southern BTH and lower in the northern. This is a result of both natural and human factors. Meanwhile, the SO2 concentration demonstrates a decreasing trend with 14.92%, 28.57%, and 27.43% compared with 2006, during the events of 2008 Olympic Games, 2014 Asia-Pacific Economic Cooperation (APEC) summit, and 2015 Military Parade, respectively. The improvement indicates that the direct effect is attributed to a series of long-term and short-term control measures, which have been implemented by the government. The findings of this study are desirable to assist local policy makers in the BTH for drawing up control strategies regarding the mitigation of environmental pollution in the future.

Journal ArticleDOI
TL;DR: In this paper, the authors assessed mesoscale convective systems (MCSs) climatology, the thermodynamic and dynamical variables, and teleconnections influencing MCSs development for the Paute basin (PB) in the Ecuadorian Andes from 2000 to 2009.
Abstract: Mesoscale convective systems (MCSs) climatology, the thermodynamic and dynamical variables, and teleconnections influencing MCSs development are assessed for the Paute basin (PB) in the Ecuadorian Andes from 2000 to 2009. The seasonality of MCSs occurrence shows a bimodal pattern, with higher occurrence during March-April (MA) and October-November (ON), analogous to the regional rainfall seasonality. The diurnal cycle of MCSs shows a clear nocturnal occurrence, especially during the MA and ON periods. Interestingly, despite the higher occurrence of MCSs during the rainy seasons, the monthly size relative frequency remains fairly constant throughout the year. On the east of the PB, the persistent high convective available potential and low convective inhibition values from midday to nighttime are likely related to the nocturnal development of the MCSs. A significant positive correlation between the MCSs occurrence to the west of the PB and the Trans-Nino index was found, suggesting that ENSO is an important source of interannual variability of MCSs frequency with increasing development of MCSs during warm ENSO phases. On the east of the PB, the variability of MCSs is positively correlated to the tropical Atlantic sea surface temperature anomalies south of the equator, due to the variability of the Atlantic subtropical anticyclone, showing main departures from this relation when anomalous conditions occur in the tropical Pacific due to ENSO.

Journal ArticleDOI
Shaodan Chen1, Liping Zhang1, Xin Liu1, Mengyao Guo1, Dunxian She1 
TL;DR: In this paper, the correlation between the standardized precipitation evapotranspiration index (SPEI) calculated using station-based meteorological data collected from 1961 to 2013 in the middle and lower reaches of the Yangtze River Basin (MLRYRB) are used to monitor droughts.
Abstract: Droughts represent the most complex and damaging type of natural disaster, and they have taken place with increased frequency in China in recent years. Values of the standardized precipitation evapotranspiration index (SPEI) calculated using station-based meteorological data collected from 1961 to 2013 in the middle and lower reaches of the Yangtze River Basin (MLRYRB) are used to monitor droughts. In addition, the SPEI is determined for different timescales (1, 3, 6, and 12 months) to characterize dry or wet conditions in this study area. Moreover, remote sensing methods can cover large areas, and multispectral and temporal observations are provided by satellite sensors. The temperature vegetation dryness index (TVDI) is selected to permit assessment of drought conditions. In addition, the correlation between the SPEI and TVDI values is calculated. The results show that the SPEI values over different timescales reflect complex variations in drought conditions and have been well applied in the MLRYRB. Droughts occurred on an annual basis in 1963, 1966, 1971, 1978, 1979, 1986, 2001, 2011, and 2013, particularly 2011. In addition, the regional average drought frequency in the study area during 1961–2013 is 30%, as determined using the SPEI. An analysis of the correlation between the monthly values of the TVDI and the SPEI-3 shows that a negative relationship exists between the SPEI-3 and the TVDI. That is, smaller TVDI values are associated with greater SPEI-3 values and reduced drought conditions, whereas larger TVDI values are associated with smaller SPEI-3 values and enhanced drought conditions. Therefore, this study of the relationship between the SPEI and the TVDI can provide a basis for government to mitigate the effects of drought.

Journal ArticleDOI
TL;DR: In this article, the authors developed a reliable statistical downscaling algorithm to produce high quality, high spatial resolution precipitation products from Tropical Rainfall Monitoring Mission (TRMM) 3B43 data over the Yarlung Zangbo River Basin using an optimal subset regression (OSR) model combined with multiple topographical factors, the Normalized Difference Vegetation Index (NDVI), and observational data from rain gauge stations.
Abstract: High accuracy, high spatial resolution precipitation data is important for understanding basin-scale hydrology and the spatiotemporal distributions of regional precipitation. The objective of this study was to develop a reliable statistical downscaling algorithm to produce high quality, high spatial resolution precipitation products from Tropical Rainfall Monitoring Mission (TRMM) 3B43 data over the Yarlung Zangbo River Basin using an optimal subset regression (OSR) model combined with multiple topographical factors, the Normalized Difference Vegetation Index (NDVI), and observational data from rain gauge stations. After downscaling, the bias between TRMM 3B43 and rain gauge data decreased considerably from 0.397 to 0.109, the root-mean-square error decreased from 235.16 to 124.60 mm, and the increased from 0.54 to 0.61, indicating significant improvement in the spatial resolution and accuracy of the TRMM 3B43 data. Moreover, the spatial patterns of both precipitation rates of change and their corresponding value statistics were consistent between the downscaled results and the original TRMM 3B43 during the 2001–2014 period, which verifies that the downscaling method performed well in the Yarlung Zangbo River Basin. Its high performance in downscaling precipitation was also proven by comparing with other models. All of these findings indicate that the proposed approach greatly improved the quality and spatial resolution of TRMM 3B43 rainfall products in the Yarlung Zangbo River Basin, for which rain gauge data is limited. The potential of the post-real-time Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) downscaled precipitation product was also demonstrated in this study.

Journal ArticleDOI
TL;DR: Based on the generalized complementary principle proposed by Brutsaert in 2015, this article used meteorological and hydrological data to estimate the actual evapotranspiration at a resolution of 1'km'×'1'km between the years of 1961 and 2000.
Abstract: The accurate estimation of actual evapotranspiration can help improve the utilization of water resources and ease the ecological stress. Based on the generalized complementary principle proposed by Brutsaert in 2015, we used meteorological and hydrological data to estimate the actual evapotranspiration at a resolution of 1 km × 1 km between the years of 1961 and 2000 and also verified the model’s stability. In this study, we used the water balance equation to calibrate the parameters, coupled with the spatial simulation results of the meteorological elements in the actual evapotranspiration model. The estimation results of actual evapotranspiration show that the generalized complementary principle model had high estimation precision in this basin, with an average absolute error of 16.64 mm and an average relative error of 2.25%. With respect to spatial distribution, the average actual evapotranspiration over the years in the basin tended to have high and low distribution in the northern and southern parts of the basin, respectively. The actual evapotranspiration in the basin showed a decreasing trend over the period, with a rate of 24.1 mm/10 years. Correlation coefficient analysis showed that the percentage decreases in percentage sunshine and the decreases in the daily range of temperature were the main reasons for the decrease in actual evapotranspiration.

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the changes in surface runoff during 1980-2010 in six subbasins in the mountainous region of the Haihe River Basin, and identified changes in the relative contributions of climate (precipitation and temperature) and land-use to surface runoff decrease.
Abstract: The relative contributions of different factors to the variation in surface runoff have been broadly quantified. However, little attention has been paid to how these relative contributions have changed over time. We analyzed the changes in surface runoff during 1980–2010 in six subbasins in the mountainous region of the Haihe River Basin, one of the most serious water shortage regions in China, and identified the changes in the relative contributions of climate (precipitation and temperature) and land-use to surface runoff decrease. There was a decreasing tendency in surface runoff in all subbasins, four of which had an abrupt change point around 1998. Comparing the relative contributions before and after 1998 in the four subbasins, the average influence of climate was found to decline dramatically from 67.1% to 30.5%, while that of land-use increased from 23.9% to 69.5% mainly due to the increase of forest area. Our results revealed that the primary environmental factor responsible for runoff variations was not constant, and an alternation may accentuate the impact and stimulate an abrupt change of runoff in semiarid and semihumid mountainous regions. This will help in taking tracking measures to deal with the complex water resource challenges according to different driving factors.

Journal ArticleDOI
TL;DR: In this paper, the spatial and temporal distribution of heavy rainfall events and its associated circulation anomalies over Tanzania during March to May (MAM) rainfall season of 1980-2010 were analyzed.
Abstract: This study analyses the spatial and temporal distribution of heavy rainfall events (HREs) and its associated circulation anomalies over Tanzania during March to May (MAM) rainfall season of 1980–2010. A total of 822 HREs were revealed, concentrated over the northern sector (NS) of the country. Years with anomalous HREs are associated with low-level westerly convergence, advection of moisture from both the Indian Ocean and Congo basin, an upper warm temperature anomaly (UWTA), intensified and well-positioned Intertropical Convergence Zone (ITCZ), and pronounced rising motion since the ascending limb of the Walker type of circulation is centered over Tanzania. The analysis of the UWTA in this study has brought a key factor in exploring the possible likely cause and improved early warning system for the HREs during the MAM rainfall season in Tanzania. Making use of the thermal wind equation and the velocity divergent form of the continuity equation (DFCE), we found that the UWTA results into an upper-level horizontal wind divergence which significantly accelerates vertical ascent, deepening the surface low pressure for an enhanced convective process and HREs formation.

Journal ArticleDOI
TL;DR: Using echo-top height and hourly rainfall datasets, a new reflectivity-rainfall (Z-R) relationship is established in the present study for the radar-based quantitative precipitation estimation (RQPE), taking into account both the temporal evolution (dynamical) and the types of echoes.
Abstract: Using echo-top height and hourly rainfall datasets, a new reflectivity-rainfall (Z-R) relationship is established in the present study for the radar-based quantitative precipitation estimation (RQPE), taking into account both the temporal evolution (dynamical) and the types of echoes (i.e., based on echo-top height classification). The new Z-R relationship is then applied to derive the RQPE over the middle and lower reaches of Yangtze River for two short-time intense rainfall cases in summer (2200 UTC 1 June 2016 and 2200 UTC 18 June 2016) and one stratiform rainfall case in winter (0000 UTC 15 December 2017), and then the comparative analyses between the RQPE and the RQPEs derived by the other two methods (the fixed Z-R relationship and the dynamical Z-R relationship based on radar reflectivity classification) are accomplished. The results show that the RQPE from the new Z-R relationship is much closer to the observation than those from the other two methods because the new method simultaneously considers the echo intensity (reflecting the size and concentration of hydrometers to a certain extent) and the echo-top height (reflecting the updraft to a certain extent). Two statistics of 720 rainfall events in summer (April to June 2017) and 50 rainfall events in winter (December 2017) over the same region show that the correlation coefficient (root-mean-squared error and relative error) between RQPE derived by the new Z-R relationship and observation is significantly increased (decreased) compared to the other two Z-R relationships. Besides, the new Z-R relationship is also good at estimating rainfall with different intensities as compared to the other two methods, especially for the intense rainfall.

Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors analyzed the spatial and temporal characteristics of droughts with the standard precipitation index (SPI), comprehensive meteorological drought index (CI), and reconnaissance drought index(RDI).
Abstract: Guizhou Province, China, experienced several severe drought events over the period from 1960 to 2013, causing great economic loss and intractable conflicts over water. In this study, the spatial and temporal characteristics of droughts are analyzed with the standard precipitation index (SPI), comprehensive meteorological drought index (CI), and reconnaissance drought index (RDI). Meanwhile, historical drought records are used to test the performance of each index at identifying droughts. All three indices show decreasing annual and autumn trends, with the latter particularly prominent. 29, 30, and 32 drought events were identified during 1960–2013 by the SPI, CI, and RDI, respectively. Continuous drought is more frequent in winter–spring and summer–autumn. There is a significant increasing trend in drought event frequency, peak, and strength since the start of the 21st century. Drought duration indicated by CI shows longer durations in the higher-elevation region of central and western Guizhou. The corresponding drought severity is high in these regions. SPI and RDI indicate longer drought durations in the lower elevation central and eastern regions of Guizhou Province, where the corresponding drought severity is also very strong. SPI shows an increasing trend in drought duration and drought severity across most of the regions of Guizhou. In general, SPI and RDI show an increasing trend in the western Guizhou Province and a decreasing trend in central and eastern Guizhou. Comparing these three drought indices with historical records, the RDI is found to be more objective and reliable than the SPI and CI when identifying the periods of drought in Guizhou.

Journal ArticleDOI
TL;DR: In this article, a selected number of global climate models (GCMs) from the fifth Coupled Model Intercomparison Project (CMIP5) were evaluated over the Volta Basin for precipitation.
Abstract: A selected number of global climate models (GCMs) from the fifth Coupled Model Intercomparison Project (CMIP5) were evaluated over the Volta Basin for precipitation. Biases in models were computed by taking the differences between the averages over the period (1950–2004) of the models and the observation, normalized by the average of the observed for the annual and seasonal timescales. The Community Earth System Model, version 1-Biogeochemistry (CESM1-BGC), the Community Climate System Model Version 4 (CCSM4), the Max Planck Institute Earth System Model, Medium Range (MPI-ESM-MR), the Norwegian Earth System Model (NorESM1-M), and the multimodel ensemble mean were able to simulate the observed climatological mean of the annual total precipitation well (average biases of 1.9% to 7.5%) and hence were selected for the seasonal and monthly timescales. Overall, all the models (CESM1-BGC, CCSM4, MPI-ESM-MR, and NorESM1-M) scored relatively low for correlation (<0.5) but simulated the observed temporal variability differently ranging from 1.0 to 3.0 for the seasonal total. For the annual cycle of the monthly total, the CESM1-BGC, the MPI-ESM-MR, and the NorESM1-M were able to simulate the peak of the observed rainy season well in the Soudano-Sahel, the Sahel, and the entire basin, respectively, while all the models had difficulty in simulating the bimodal pattern of the Guinea Coast. The ensemble mean shows high performance compared to the individual models in various timescales.

Journal ArticleDOI
TL;DR: A novel multiple kernel learning (MKL) model that embodies the characteristics of ensemble learning, kernel learning, and representative learning is proposed to forecast the near future air quality (AQ).
Abstract: Air quality prediction is an important research issue due to the increasing impact of air pollution on the urban environment. However, existing methods often fail to forecast high-polluting air conditions, which is precisely what should be highlighted. In this paper, a novel multiple kernel learning (MKL) model that embodies the characteristics of ensemble learning, kernel learning, and representative learning is proposed to forecast the near future air quality (AQ). The centered alignment approach is used for learning kernels, and a boosting approach is used to determine the proper number of kernels. To demonstrate the performance of the proposed MKL model, its performance is compared to that of classical autoregressive integrated moving average (ARIMA) model; widely used parametric models like random forest (RF) and support vector machine (SVM); popular neural network models like multiple layer perceptron (MLP); and long short-term memory neural network. Datasets acquired from a coastal city Hong Kong and an inland city Beijing are used to train and validate all the models. Experiments show that the MKL model outperforms the other models. Moreover, the MKL model has better forecast ability for high health risk category AQ.

Journal ArticleDOI
TL;DR: Li et al. as discussed by the authors developed an approach to estimate soil moisture in agricultural areas from GF-3 data, using an inversion technique based on an artificial neural network (ANN) is introduced.
Abstract: Soil moisture is the basic condition required for crop growth and development. Gaofen-3 (GF-3) is the first C-band synthetic-aperture radar (SAR) satellite of China, offering broad land and ocean imaging applications, including soil moisture monitoring. This study developed an approach to estimate soil moisture in agricultural areas from GF-3 data. An inversion technique based on an artificial neural network (ANN) is introduced. The neural network was trained and tested on a training sample dataset generated from the Advanced Integral Equation Model. Incidence angle and HH or VV polarization data were used as input variables of the ANN, with soil moisture content (SMC) and surface roughness as the output variables. The backscattering contribution from the vegetation was eliminated using the water cloud model (WCM). The acquired soil backscattering coefficients of GF-3 and in situ measurement data were used to validate the SMC estimation algorithm, which achieved satisfactory results (R2 = 0.736; RMSE = 0.042). These results highlight the contribution of the combined use of the GF-3 synthetic-aperture radar and Landsat-8 images based on an ANN method for improving SMC estimates and supporting hydrological studies.