scispace - formally typeset
Search or ask a question

Showing papers in "Biomedical Engineering Online in 2020"


Journal ArticleDOI
TL;DR: The concepts of OOAC are introduced and its application to the construction of physiological models, drug development, and toxicology from the perspective of different organs are reviewed.
Abstract: The organ-on-a-chip (OOAC) is in the list of top 10 emerging technologies and refers to a physiological organ biomimetic system built on a microfluidic chip. Through a combination of cell biology, engineering, and biomaterial technology, the microenvironment of the chip simulates that of the organ in terms of tissue interfaces and mechanical stimulation. This reflects the structural and functional characteristics of human tissue and can predict response to an array of stimuli including drug responses and environmental effects. OOAC has broad applications in precision medicine and biological defense strategies. Here, we introduce the concepts of OOAC and review its application to the construction of physiological models, drug development, and toxicology from the perspective of different organs. We further discuss existing challenges and provide future perspectives for its application.

351 citations


Journal ArticleDOI
TL;DR: A series of functional electrical stimulation systems are presented to illustrate the fundamentals of the technology and its applications, including its integration with brain–computer interfaces and wearable (garment) technology.
Abstract: Functional electrical stimulation is a technique to produce functional movements after paralysis. Electrical discharges are applied to a person’s muscles making them contract in a sequence that allows performing tasks such as grasping a key, holding a toothbrush, standing, and walking. The technology was developed in the sixties, during which initial clinical use started, emphasizing its potential as an assistive device. Since then, functional electrical stimulation has evolved into an important therapeutic intervention that clinicians can use to help individuals who have had a stroke or a spinal cord injury regain their ability to stand, walk, reach, and grasp. With an expected growth in the aging population, it is likely that this technology will undergo important changes to increase its efficacy as well as its widespread adoption. We present here a series of functional electrical stimulation systems to illustrate the fundamentals of the technology and its applications. Most of the concepts continue to be in use today by modern day devices. A brief description of the potential future of the technology is presented, including its integration with brain–computer interfaces and wearable (garment) technology.

122 citations


Journal ArticleDOI
TL;DR: This review paper discusses the development of a computer-aided-design (CAD) approach for the manufacture of bone scaffolds, from the anatomical data acquisition to the final model, and provides information on the optimization of scaffold’s internal architecture, advanced materials, and process parameters to achieve the best biomimetic performance.
Abstract: Advances in biomaterials and the need for patient-specific bone scaffolds require modern manufacturing approaches in addition to a design strategy. Hybrid materials such as those with functionally graded properties are highly needed in tissue replacement and repair. However, their constituents, proportions, sizes, configurations and their connection to each other are a challenge to manufacturing. On the other hand, various bone defect sizes and sites require a cost-effective readily adaptive manufacturing technique to provide components (scaffolds) matching with the anatomical shape of the bone defect. Additive manufacturing or three-dimensional (3D) printing is capable of fabricating functional physical components with or without porosity by depositing the materials layer-by-layer using 3D computer models. Therefore, it facilitates the production of advanced bone scaffolds with the feasibility of making changes to the model. This review paper first discusses the development of a computer-aided-design (CAD) approach for the manufacture of bone scaffolds, from the anatomical data acquisition to the final model. It also provides information on the optimization of scaffold’s internal architecture, advanced materials, and process parameters to achieve the best biomimetic performance. Furthermore, the review paper describes the advantages and limitations of 3D printing technologies applied to the production of bone tissue scaffolds.

80 citations


Journal ArticleDOI
TL;DR: AI classification of texture and morphological features of portable CXRs accurately distinguishes COVID-19 lung infection in patients in multi-class datasets.
Abstract: The large volume and suboptimal image quality of portable chest X-rays (CXRs) as a result of the COVID-19 pandemic could post significant challenges for radiologists and frontline physicians. Deep-learning artificial intelligent (AI) methods have the potential to help improve diagnostic efficiency and accuracy for reading portable CXRs. The study aimed at developing an AI imaging analysis tool to classify COVID-19 lung infection based on portable CXRs. Public datasets of COVID-19 (N = 130), bacterial pneumonia (N = 145), non-COVID-19 viral pneumonia (N = 145), and normal (N = 138) CXRs were analyzed. Texture and morphological features were extracted. Five supervised machine-learning AI algorithms were used to classify COVID-19 from other conditions. Two-class and multi-class classification were performed. Statistical analysis was done using unpaired two-tailed t tests with unequal variance between groups. Performance of classification models used the receiver-operating characteristic (ROC) curve analysis. For the two-class classification, the accuracy, sensitivity and specificity were, respectively, 100%, 100%, and 100% for COVID-19 vs normal; 96.34%, 95.35% and 97.44% for COVID-19 vs bacterial pneumonia; and 97.56%, 97.44% and 97.67% for COVID-19 vs non-COVID-19 viral pneumonia. For the multi-class classification, the combined accuracy and AUC were 79.52% and 0.87, respectively. AI classification of texture and morphological features of portable CXRs accurately distinguishes COVID-19 lung infection in patients in multi-class datasets. Deep-learning methods have the potential to improve diagnostic efficiency and accuracy for portable CXRs.

79 citations


Journal ArticleDOI
TL;DR: The experimental results demonstrate that classification of the features from pre-trained deep models shows the promising application in COVID-19 severity screening, whereas the DenseNet-201 with cubic SVM model achieved the best performance.
Abstract: Chest CT is used for the assessment of the severity of patients infected with novel coronavirus 2019 (COVID-19). We collected chest CT scans of 202 patients diagnosed with the COVID-19, and try to develop a rapid, accurate and automatic tool for severity screening follow-up therapeutic treatment. A total of 729 2D axial plan slices with 246 severe cases and 483 non-severe cases were employed in this study. By taking the advantages of the pre-trained deep neural network, four pre-trained off-the-shelf deep models (Inception-V3, ResNet-50, ResNet-101, DenseNet-201) were exploited to extract the features from these CT scans. These features are then fed to multiple classifiers (linear discriminant, linear SVM, cubic SVM, KNN and Adaboost decision tree) to identify the severe and non-severe COVID-19 cases. Three validation strategies (holdout validation, tenfold cross-validation and leave-one-out) are employed to validate the feasibility of proposed pipelines. The experimental results demonstrate that classification of the features from pre-trained deep models shows the promising application in COVID-19 severity screening, whereas the DenseNet-201 with cubic SVM model achieved the best performance. Specifically, it achieved the highest severity classification accuracy of 95.20% and 95.34% for tenfold cross-validation and leave-one-out, respectively. The established pipeline was able to achieve a rapid and accurate identification of the severity of COVID-19. This may assist the physicians to make more efficient and reliable decisions.

54 citations


Journal ArticleDOI
TL;DR: All the analyzed publications indicated it was possible to develop an automated system for glaucoma diagnosis and detection and showed that the data augmentation and transfer learning techniques have been applied as an alternative way to optimize and reduce networks training.
Abstract: This is a systematic review on the main algorithms using machine learning (ML) in retinal image processing for glaucoma diagnosis and detection. ML has proven to be a significant tool for the development of computer aided technology. Furthermore, secondary research has been widely conducted over the years for ophthalmologists. Such aspects indicate the importance of ML in the context of retinal image processing. The publications that were chosen to compose this review were gathered from Scopus, PubMed, IEEEXplore and Science Direct databases. Then, the papers published between 2014 and 2019 were selected . Researches that used the segmented optic disc method were excluded. Moreover, only the methods which applied the classification process were considered. The systematic analysis was performed in such studies and, thereupon, the results were summarized. Based on architectures used for ML in retinal image processing, some studies applied feature extraction and dimensionality reduction to detect and isolate important parts of the analyzed image. Differently, other works utilized a deep convolutional network. Based on the evaluated researches, the main difference between the architectures is the number of images demanded for processing and the high computational cost required to use deep learning techniques. All the analyzed publications indicated it was possible to develop an automated system for glaucoma diagnosis. The disease severity and its high occurrence rates justify the researches which have been carried out. Recent computational techniques, such as deep learning, have shown to be promising technologies in fundus imaging. Although such a technique requires an extensive database and high computational costs, the studies show that the data augmentation and transfer learning techniques have been applied as an alternative way to optimize and reduce networks training.

44 citations


Journal ArticleDOI
TL;DR: Evidence-informed commentary of available data and potential identified risks of emergency use authorizations and legal concessions is presented and should be taken as a guide for all possible future outbreak situations to prevent improvised reactions of national regulatory bodies.
Abstract: The world is facing an unprecedented outbreak affecting all aspects of human lives which is caused by the COVID-19 pandemic. Due to the virus novelty, healthcare systems are challenged by a high rate of patients and the shortage of medical products. To address an increased need for essential medical products, national authorities, worldwide, made various legislative concessions. This has led to essential medical products being produced by automotive, textile and other companies from various industries and approved under the emergency use authorizations or legal concessions of national regulatory bodies. This paper presents a narrative commentary of the available documentation on emergency use authorizations and legal concessions for medical products during COVID-19 pandemic. The basis for narrative commentary includes scientific articles published in Web of Science, Scopus, PubMed and Embase databases, official publications of international organizations: Food and Drug Agency (FDA), World Health Organisation (WHO), World Bank and United Nations (UN), and national regulatory agency reports in native languages (English, German, Bosnian, and Croatian) published from November 1, 2019 to May 1, 2020. This paper focuses on three types of essential medical products: mechanical ventilators, personal protective equipment (PPE) and diagnostic tests. Evidence-informed commentary of available data and potential identified risks of emergency use authorizations and legal concessions is presented. It is recognized that now more than ever, raising global awareness and knowledge about the importance of respecting the essential requirements is needed to guarantee the appropriate quality, performance and safety of medical products, especially during outbreak situation, such as the COVID-19 pandemic. Emergency use authorizations for production, import and approval of medical products should be strictly specified and clearly targeted from case to case and should not be general or universal for all medical products, because all of them are associated with different risk level. Presented considerations and experiences should be taken as a guide for all possible future outbreak situations to prevent improvised reactions of national regulatory bodies.

44 citations


Journal ArticleDOI
TL;DR: Simulation results demonstrate that the proposed IMF selection approach affects the classification results, and suggest that EEMD provides a robust method for feature extraction from EEG signals in order to classify pre-seizure and seizure segments.
Abstract: Epilepsy is one of the most common neurological disorders associated with disruption of brain activity. In the classification and detection of epileptic seizures, electroencephalography (EEG) measurements, which record the electrical activities of the brain, are frequently used. Empirical mode decomposition (EMD) and its derivative, ensemble EMD (EEMD) are recently developed methods used to decompose non-stationary and nonlinear signals such as EEG into a finite number of oscillations called intrinsic mode functions (IMFs). Our main objective in this study is to present a hybrid IMF selection method combining four different approaches (energy, correlation, power spectral distance, and statistical significance measures), and investigate the effect of selected IMFs extracted by EMD and EEMD on the classification. We have applied the proposed IMF selection approach on the classification of EEG signals recorded from epilepsy patients who are under treatment at our collaborator hospital. Multichannel EEG signals collected from epilepsy patients are decomposed into IMFs, and then IMF selection was performed. Finally, time- and spectral-domain, and nonlinear features are extracted and feature sets are created for the classification. The maximum classification accuracies obtained using various combinations of IMFs were 94.56%, 95.63%, 96.8%, and 96.25% for SVM, KNN, naive Bayes, and logistic regression classifiers, respectively, by using EMD analysis; whereas, the EEMD approach has provided maximum classification accuracies of 96.06%, 97%, 97%, and 96.25% for SVM, KNN, naive Bayes, and logistic regression, respectively. Classification performance with the same features obtained using direct EEG signals instead of the decomposed IMFs was worse than the aforementioned 2 approaches for every combination. Simulation results demonstrate that the proposed IMF selection approach affects the classification results. Also, EEMD provides a robust method for feature extraction from EEG signals in order to classify pre-seizure and seizure segments.

42 citations


Journal ArticleDOI
TL;DR: The proposed method using machine learning based on directional local contrast of image patches can effectively detect microaneurysms in color fundus images and provide an effective scientific basis for early clinical DR diagnosis.
Abstract: As one of the major complications of diabetes, diabetic retinopathy (DR) is a leading cause of visual impairment and blindness due to delayed diagnosis and intervention. Microaneurysms appear as the earliest symptom of DR. Accurate and reliable detection of microaneurysms in color fundus images has great importance for DR screening. A microaneurysms' detection method using machine learning based on directional local contrast (DLC) is proposed for the early diagnosis of DR. First, blood vessels were enhanced and segmented using improved enhancement function based on analyzing eigenvalues of Hessian matrix. Next, with blood vessels excluded, microaneurysm candidate regions were obtained using shape characteristics and connected components analysis. After image segmented to patches, the features of each microaneurysm candidate patch were extracted, and each candidate patch was classified into microaneurysm or non-microaneurysm. The main contributions of our study are (1) making use of directional local contrast in microaneurysms' detection for the first time, which does make sense for better microaneurysms' classification. (2) Applying three different machine learning techniques for classification and comparing their performance for microaneurysms' detection. The proposed algorithm was trained and tested on e-ophtha MA database, and further tested on another independent DIARETDB1 database. Results of microaneurysms' detection on the two databases were evaluated on lesion level and compared with existing algorithms. The proposed method has achieved better performance compared with existing algorithms on accuracy and computation time. On e-ophtha MA and DIARETDB1 databases, the area under curve (AUC) of receiver operating characteristic (ROC) curve was 0.87 and 0.86, respectively. The free-response ROC (FROC) score on the two databases was 0.374 and 0.210, respectively. The computation time per image with resolution of 2544×1969, 1400×960 and 1500×1152 is 29 s, 3 s and 2.6 s, respectively. The proposed method using machine learning based on directional local contrast of image patches can effectively detect microaneurysms in color fundus images and provide an effective scientific basis for early clinical DR diagnosis.

42 citations


Journal ArticleDOI
TL;DR: The experimental results indicate that the EBT algorithm with statistical textural features based on GGOs for differentiating COVID-19 from general pneumonia achieved high transferability, efficiency, specificity, sensitivity, and impressive accuracy, which is beneficial for inexperienced doctors to more accurately diagnose CO VID-19 and essential for controlling the spread of the disease.
Abstract: Chest CT screening as supplementary means is crucial in diagnosing novel coronavirus pneumonia (COVID-19) with high sensitivity and popularity. Machine learning was adept in discovering intricate structures from CT images and achieved expert-level performance in medical image analysis. An integrated machine learning framework on chest CT images for differentiating COVID-19 from general pneumonia (GP) was developed and validated. Seventy-three confirmed COVID-19 cases were consecutively enrolled together with 27 confirmed general pneumonia patients from Ruian People’s Hospital, from January 2020 to March 2020. To accurately classify COVID-19, region of interest (ROI) delineation was implemented based on ground-glass opacities (GGOs) before feature extraction. Then, 34 statistical texture features of COVID-19 and GP ROI images were extracted, including 13 gray-level co-occurrence matrix (GLCM) features, 15 gray-level-gradient co-occurrence matrix (GLGCM) features and 6 histogram features. High-dimensional features impact the classification performance. Thus, ReliefF algorithm was leveraged to select features. The relevance of each feature was the average weights calculated by ReliefF in n times. Features with relevance larger than the empirically set threshold T were selected. After feature selection, the optimal feature set along with 4 other selected feature combinations for comparison were applied to the ensemble of bagged tree (EBT) and four other machine learning classifiers including support vector machine (SVM), logistic regression (LR), decision tree (DT), and K-nearest neighbor with Minkowski distance equal weight (KNN) using tenfold cross-validation. The classification accuracy (ACC), sensitivity (SEN), specificity (SPE) of our proposed method yield 94.16%, 88.62% and 100.00%, respectively. The area under the receiver operating characteristic curve (AUC) was 0.99. The experimental results indicate that the EBT algorithm with statistical textural features based on GGOs for differentiating COVID-19 from general pneumonia achieved high transferability, efficiency, specificity, sensitivity, and impressive accuracy, which is beneficial for inexperienced doctors to more accurately diagnose COVID-19 and essential for controlling the spread of the disease.

42 citations


Journal ArticleDOI
Long Chen1, Fengfeng Zhang1, Wei Zhan1, Minfeng Gan1, Lining Sun1 
TL;DR: In this paper, an augmented reality (AR) technology was applied to spinal surgery to provide more intuitive information to surgeons, and the accuracy of virtual and real registration was improved via research on AR technology.
Abstract: The traditional navigation interface was intended only for two-dimensional observation by doctors; thus, this interface does not display the total spatial information for the lesion area. Surgical navigation systems have become essential tools that enable for doctors to accurately and safely perform complex operations. The image navigation interface is separated from the operating area, and the doctor needs to switch the field of vision between the screen and the patient’s lesion area. In this paper, augmented reality (AR) technology was applied to spinal surgery to provide more intuitive information to surgeons. The accuracy of virtual and real registration was improved via research on AR technology. During the operation, the doctor could observe the AR image and the true shape of the internal spine through the skin. To improve the accuracy of virtual and real registration, a virtual and real registration technique based on an improved identification method and robot-assisted method was proposed. The experimental method was optimized by using the improved identification method. X-ray images were used to verify the effectiveness of the puncture performed by the robot. The final experimental results show that the average accuracy of the virtual and real registration based on the general identification method was 9.73 ± 0.46 mm (range 8.90–10.23 mm). The average accuracy of the virtual and real registration based on the improved identification method was 3.54 ± 0.13 mm (range 3.36–3.73 mm). Compared with the virtual and real registration based on the general identification method, the accuracy was improved by approximately 65%. The highest accuracy of the virtual and real registration based on the robot-assisted method was 2.39 mm. The accuracy was improved by approximately 28.5% based on the improved identification method. The experimental results show that the two optimized methods are highly very effective. The proposed AR navigation system has high accuracy and stability. This system may have value in future spinal surgeries.

Journal ArticleDOI
TL;DR: The two evaluated systems use different technology and algorithms, but have similar performance in terms of human motion tracking, and can be adopted for monitoring home-based rehabilitation programs, taking adequate precautions however for operation, user instructions and interpretation of the results.
Abstract: Emerging sensing and communication technologies are contributing to the development of many motor rehabilitation programs outside the standard healthcare facilities. Nowadays, motor rehabilitation exercises can be easily performed and monitored even at home by a variety of motion-tracking systems. These are cheap, reliable, easy-to-use, and allow also remote configuration and control of the rehabilitation programs. The two most promising technologies for home-based motor rehabilitation programs are inertial wearable sensors and video-based motion capture systems. In this paper, after a thorough review of the relevant literature, an original experimental analysis is reported for two corresponding commercially available solutions, a wearable inertial measurement unit and the Kinect, respectively. For the former, a number of different algorithms for rigid body pose estimation from sensor data were also tested. Both systems were compared with the measurements obtained with state-of-the-art marker-based stereophotogrammetric motion analysis, taken as a gold-standard, and also evaluated outside the lab in a home environment. The results in the laboratory setting showed similarly good performance for the elementary large motion exercises, with both systems having errors in the 3–8 degree range. Usability and other possible limitations were also assessed during utilization at home, which revealed additional advantages and drawbacks for the two systems. The two evaluated systems use different technology and algorithms, but have similar performance in terms of human motion tracking. Therefore, both can be adopted for monitoring home-based rehabilitation programs, taking adequate precautions however for operation, user instructions and interpretation of the results.

Journal ArticleDOI
TL;DR: The aim of this review paper is to discuss the neurophysiological mechanisms of electrical stimulation of muscles and nerves and how BCI-controlled FES can be used in rehabilitation to improve motor function.
Abstract: Delivering short trains of electric pulses to the muscles and nerves can elicit action potentials resulting in muscle contractions. When the stimulations are sequenced to generate functional movements, such as grasping or walking, the application is referred to as functional electrical stimulation (FES). Implications of the motor and sensory recruitment of muscles using FES go beyond simple contraction of muscles. Evidence suggests that FES can induce short- and long-term neurophysiological changes in the central nervous system by varying the stimulation parameters and delivery methods. By taking advantage of this, FES has been used to restore voluntary movement in individuals with neurological injuries with a technique called FES therapy (FEST). However, long-lasting cortical re-organization (neuroplasticity) depends on the ability to synchronize the descending (voluntary) commands and the successful execution of the intended task using a FES. Brain-computer interface (BCI) technologies offer a way to synchronize cortical commands and movements generated by FES, which can be advantageous for inducing neuroplasticity. Therefore, the aim of this review paper is to discuss the neurophysiological mechanisms of electrical stimulation of muscles and nerves and how BCI-controlled FES can be used in rehabilitation to improve motor function.

Journal ArticleDOI
TL;DR: Non-invasive histological subtype stratification of NSCLC can be done favorably using multimodal MRI radiomics features and the Radscore with the semantic clinical features, a radiomics–clinical nomogram was developed, and its overall performance was evaluated.
Abstract: Non-invasive discrimination between lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) subtypes of non-small-cell lung cancer (NSCLC) could be very beneficial to the patients unfit for the invasive diagnostic procedures. The aim of this study was to investigate the feasibility of utilizing the multimodal magnetic resonance imaging (MRI) radiomics and clinical features in classifying NSCLC. This retrospective study involved 148 eligible patients with postoperative pathologically confirmed NSCLC. The study was conducted in three steps: (1) feature extraction was performed using the online freely available package with the multimodal MRI data; (2) feature selection was performed using the Student’s t test and support vector machine (SVM)-based recursive feature elimination method with the training cohort (n = 100), and the performance of these selected features was evaluated using both the training and the validation cohorts (n = 48) with a non-linear SVM classifier; (3) a Radscore model was then generated using logistic regression algorithm; (4) Integrating the Radscore with the semantic clinical features, a radiomics–clinical nomogram was developed, and its overall performance was evaluated with both cohorts. Thirteen optimal features achieved favorable discrimination performance with both cohorts, with area under the curve (AUC) of 0.819 and 0.824, respectively. The radiomics–clinical nomogram integrating the Radscore with the independent clinical predictors exhibited more favorable discriminative power, with AUC improved to 0.901 and 0.872 in both cohorts, respectively. The Hosmer–Lemeshow test and decision curve analysis results furtherly showed good predictive precision and clinical usefulness of the nomogram. Non-invasive histological subtype stratification of NSCLC can be done favorably using multimodal MRI radiomics features. Integrating the radiomics features with the clinical features could further improve the performance of the histological subtype stratification in patients with NSCLC.

Journal ArticleDOI
TL;DR: The proposed dual GANs-based harmonization method is effective to harmonize neonatal DTI-derived metrics from different sites and holds the lowest median values in absolute errors and root mean square errors.
Abstract: Site-specific variations are challenges for pooling analyses in multi-center studies. This work aims to propose an inter-site harmonization method based on dual generative adversarial networks (GANs) for diffusion tensor imaging (DTI) derived metrics on neonatal brains. DTI-derived metrics (fractional anisotropy, FA; mean diffusivity, MD) are obtained on age-matched neonates without magnetic resonance imaging (MRI) abnormalities: 42 neonates from site 1 and 42 neonates from site 2. Significant inter-site differences of FA can be observed. The proposed harmonization approach and three conventional methods (the global-wise scaling, the voxel-wise scaling, and the ComBat) are performed on DTI-derived metrics from two sites. During the tract-based spatial statistics, inter-site differences can be removed by the proposed dual GANs method, the voxel-wise scaling, and the ComBat. Among these methods, the proposed method holds the lowest median values in absolute errors and root mean square errors. During the pooling analysis of two sites, Pearson correlation coefficients between FA and the postmenstrual age after harmonization are larger than those before harmonization. The effect sizes (Cohen’s d between males and females) are also maintained by the harmonization procedure. The proposed dual GANs-based harmonization method is effective to harmonize neonatal DTI-derived metrics from different sites. Results in this study further suggest that the GANs-based harmonization is a feasible pre-processing method for pooling analyses in multi-center studies.

Journal ArticleDOI
TL;DR: The proposed gated recurrent unit model can learn features from HS directly, which means it can be independent of expert knowledge, and demonstrates the effectiveness of HS analysis for HF early screening.
Abstract: Heart failure (HF) is a type of cardiovascular disease caused by abnormal cardiac structure and function. Early screening of HF has important implication for treatment in a timely manner. Heart sound (HS) conveys relevant information related to HF; this study is therefore based on the analysis of HS signals. The objective is to develop an efficient tool to identify subjects of normal, HF with preserved ejection fraction and HF with reduced ejection fraction automatically. We proposed a novel HF screening framework based on gated recurrent unit (GRU) model in this study. The logistic regression-based hidden semi-Markov model was adopted to segment HS frames. Normalized frames were taken as the input of the proposed model which can automatically learn the deep features and complete the HF screening without de-nosing and hand-crafted feature extraction. To evaluate the performance of proposed model, three methods are used for comparison. The results show that the GRU model gives a satisfactory performance with average accuracy of 98.82%, which is better than other comparison models. The proposed GRU model can learn features from HS directly, which means it can be independent of expert knowledge. In addition, the good performance demonstrates the effectiveness of HS analysis for HF early screening.

Journal ArticleDOI
TL;DR: This paper reviews low-cost and accessible Internet of Things (IoT) technologies with the aim of informing biomedical engineers of possibilities, workflows and limitations they present and evidence their use within healthcare research through literature and experimentation.
Abstract: Healthcare studies are moving toward individualised measurement. There is need to move beyond supervised assessments in the laboratory/clinic. Longitudinal free-living assessment can provide a wealth of information on patient pathology and habitual behaviour, but cost and complexity of equipment have typically been a barrier. Lack of supervised conditions within free-living assessment means there is need to augment these studies with environmental analysis to provide context to individual measurements. This paper reviews low-cost and accessible Internet of Things (IoT) technologies with the aim of informing biomedical engineers of possibilities, workflows and limitations they present. In doing so, we evidence their use within healthcare research through literature and experimentation. As hardware becomes more affordable and feature rich, the cost of data magnifies. This can be limiting for biomedical engineers exploring low-cost solutions as data costs can make IoT approaches unscalable. IoT technologies can be exploited by biomedical engineers, but more research is needed before these technologies can become commonplace for clinicians and healthcare practitioners. It is hoped that the insights provided by this paper will better equip biomedical engineers to lead and monitor multi-disciplinary research investigations.

Journal ArticleDOI
TL;DR: A textile-based multichannel ECG band that has the ability to measure ECG from multiple locations on the waist is developed and a probabilistic approach—based on prediction and update strategies—to detect R -peaks from noisy textile data in different statuses, including sitting, standing, and jogging is developed.
Abstract: The development of wearable health monitoring systems is garnering tremendous interest in research, technology and commercial applications. Their ability of providing unique capabilities in continuous, real-time, and non-invasive tracking of the physiological markers of users can provide insights into the performance and health of individuals. Electrocardiogram (ECG) signals are of particular interest, as cardiovascular disease is the leading cause of death globally. Monitoring heart health and its conditions such as ventricular disturbances and arrhythmias can be achieved through evaluating various features of ECG such as R-peaks, QRS complex, T-wave, and P-wave. Despite recent advances in biosensors for wearable applications, most of the currently available solutions rely solely on a single system attached to the body, limiting the ability to obtain reliable and multi-location biosignals. However, in engineering systems, sensor fusion, which is the optimal integration and processing of data from multiple sensors, has been a common theme and should be considered for wearables. In recent years, due to an increase in the availability and variety of different types of sensors, the possibility of achieving sensor fusion in wearable systems has become more attainable. Sensor fusion in multi-sensing systems results in significant enhancements of information inferences compared to those from systems with a sole sensor. One step towards the development of sensor fusion for wearable health monitoring systems is the accessibility to multiple reliable electrophysiological signals, which can be recorded continuously. In this paper, we develop a textile-based multichannel ECG band that has the ability to measure ECG from multiple locations on the waist. As a proof of concept, we demonstrate that ECG signals can be reliably obtained from different locations on the waist where the shape of the QRS complex is nearly comparable with recordings from the chest using traditional gel electrodes. In addition, we develop a probabilistic approach—based on prediction and update strategies—to detect R-peaks from noisy textile data in different statuses, including sitting, standing, and jogging. In this approach, an optimal search method is utilized to detect R-peaks based on the history of the intervals between previously detected R-peaks. We show that the performance of our probabilistic approach in R-peak detection is significantly better than that based on Pan–Tompkins and optimal-threshold methods. A textile-based multichannel ECG band was developed to track the heart rate changes from multiple locations on the waist. We demonstrated that (i) the ECG signal can be detected from different locations on the waist, and (ii) the accuracy of the detected R-peaks from textile sensors was improved by using our proposed probabilistic approach. Despite the limitations of the textile sensors that might compromise the quality of ECG signals, we anticipate that the textile-based multichannel ECG band can be considered as an effective wearable system to facilitate the development of sensor fusion methodology for pervasive and non-invasive health monitoring through continuous tracking of heart rate variability (HRV) from the waist. In addition, from the commercialization point of view, we anticipate that the developed band has the potential to be integrated into garments such as underwear, bras or pants so that individuals can use it on a daily basis.

Journal ArticleDOI
TL;DR: The proposed computer-assisted detection system can automatically detect the suspected aneurysm areas in contrast-unenhanced time-of-flight magnetic resonance angiography images and can be used for aneurYSm screening in the daily physical examination.
Abstract: As the rupture of cerebral aneurysm may lead to fatal results, early detection of unruptured aneurysms may save lives. At present, the contrast-unenhanced time-of-flight magnetic resonance angiography is one of the most commonly used methods for screening aneurysms. The computer-assisted detection system for cerebral aneurysms can help clinicians improve the accuracy of aneurysm diagnosis. As fully convolutional network could classify the image pixel-wise, its three-dimensional implementation is highly suitable for the classification of the vascular structure. However, because the volume of blood vessels in the image is relatively small, 3D convolutional neural network does not work well for blood vessels. The presented study developed a computer-assisted detection system for cerebral aneurysms in the contrast-unenhanced time-of-flight magnetic resonance angiography image. The system first extracts the volume of interest with a fully automatic vessel segmentation algorithm, then uses 3D-UNet-based fully convolutional network to detect the aneurysm areas. A total of 131 magnetic resonance angiography image data are used in this study, among which 76 are training sets, 20 are internal test sets and 35 are external test sets. The presented system obtained 94.4% sensitivity in the fivefold cross-validation of the internal test sets and obtained 82.9% sensitivity with 0.86 false positive/case in the detection of the external test sets. The proposed computer-assisted detection system can automatically detect the suspected aneurysm areas in contrast-unenhanced time-of-flight magnetic resonance angiography images. It can be used for aneurysm screening in the daily physical examination.

Journal ArticleDOI
TL;DR: The study developed an accurate methodology for classification and prediction of gait events, based on neural network interpretation of intra-subject sEMG data, able to outperform more typical inter-subject approaches.
Abstract: Machine learning models were satisfactorily implemented for estimating gait events from surface electromyographic (sEMG) signals during walking. Most of them are based on inter-subject approaches for data preparation. Aim of the study is to propose an intra-subject approach for binary classifying gait phases and predicting gait events based on neural network interpretation of sEMG signals and to test the hypothesis that the intra-subject approach is able to achieve better performances compared to an inter-subject one. To this aim, sEMG signals were acquired from 10 leg muscles in about 10.000 strides from 23 healthy adults, during ground walking, and a multi-layer perceptron (MLP) architecture was implemented. Classification/prediction accuracy was tested vs. the ground truth, represented by the foot–floor-contact signal provided by three foot-switches, through samples not used during training phase. Average classification accuracy of 96.1 ± 1.9% and mean absolute value (MAE) of 14.4 ± 4.7 ms and 23.7 ± 11.3 ms in predicting heel-strike (HS) and toe-off (TO) timing were provided. Performances of the proposed approach were tested by a direct comparison with performances provided by the inter-subject approach in the same population. Comparison results showed 1.4% improvement of mean classification accuracy and a significant (p < 0.05) decrease of MAE in predicting HS and TO timing (23% and 33% reduction, respectively). The study developed an accurate methodology for classification and prediction of gait events, based on neural network interpretation of intra-subject sEMG data, able to outperform more typical inter-subject approaches. The clinically useful contribution consists in predicting gait events from only EMG signals from a single subject, contributing to remove the need of further sensors for the direct measurement of temporal data.

Journal ArticleDOI
TL;DR: A model-based approach to personalize robot-aided rehabilitation therapy within training sessions that combines the information from different motor performance measures recorded from the robot to continuously estimate patients’ motor improvement for a series of point-to-point reaching movements in different directions is presented.
Abstract: In the past years, robotic systems have become increasingly popular in upper limb rehabilitation. Nevertheless, clinical studies have so far not been able to confirm superior efficacy of robotic therapy over conventional methods. The personalization of robot-aided therapy according to the patients’ individual motor deficits has been suggested as a pivotal step to improve the clinical outcome of such approaches. Here, we present a model-based approach to personalize robot-aided rehabilitation therapy within training sessions. The proposed method combines the information from different motor performance measures recorded from the robot to continuously estimate patients’ motor improvement for a series of point-to-point reaching movements in different directions. Additionally, it comprises a personalization routine to automatically adapt the rehabilitation training. We engineered our approach using an upper-limb exoskeleton. The implementation was tested with 17 healthy subjects, who underwent a motor-adaptation paradigm, and two subacute stroke patients, exhibiting different degrees of motor impairment, who participated in a pilot test undergoing rehabilitative motor training. The results of the exploratory study with healthy subjects showed that the participants divided into fast and slow adapters. The model was able to correctly estimate distinct motor improvement progressions between the two groups of participants while proposing individual training protocols. For the two pilot patients, an analysis of the selected motor performance measures showed that both patients were able to retain the improvements gained during training when reaching movements were reintroduced at a later stage. These results suggest that the automated training adaptation was appropriately timed and specifically tailored to the abilities of each individual. The results of our exploratory study demonstrated the feasibility of the proposed model-based approach for the personalization of robot-aided rehabilitation therapy. The pilot test with two subacute stroke patients further supported our approach, while providing encouraging results for the applicability in clinical settings. Trial registration This study is registered in ClinicalTrials.gov (NCT02770300, registered 30 March 2016, https://clinicaltrials.gov/ct2/show/NCT02770300 )

Journal ArticleDOI
TL;DR: Suppression of miR-153 exerts a cardioprotective effect against I/R-induced injury through the regulation of Nrf2/HO-1 signaling, suggesting that targeting miD-153, NRF2, or both may serve as promising therapeutic targets for the alleviation of I-R- induced injury.
Abstract: Previous in vitro studies demonstrated that suppression of microRNAs might protect cardiomyocytes and neurons against oxygen–glucose deprivation and reoxygenation (OGD/R)-induced cell apoptosis. However, whether the protective effect of miR-153-inhibition on cardiomyocytes can be observed in the animal model is unknown. We aimed to address this question using a rat model of ischemia–reperfusion (I/R). Rats were received the intramyocardial injection of saline or adenovirus-carrying target or control gene, and the rats were subjected to ischemia/reperfusion (I/R) treatment. The effects of miR-153 on I/R-induced inflammatory response and oxidative stress in the rat model were assessed using various assays. We found that suppression of miR-153 decreased cleaved caspase-3 and Bcl-2-associated X (Bax) expression, and increased B cell lymphoma 2 (Bcl-2) expression. We further confirmed that Nuclear transcription factor erythroid 2-like 2 (Nrf2) is a functional target of miR-153, and Nrf2/Heme oxygenase-1 (HO-1) signaling was involved in miR-153-regulated I/R-induced cardiomyocytes apoptosis. Inhibition of miR-153 reduced I/R-induced inflammatory response and oxidative stress in rat myocardium. Suppression of miR-153 exerts a cardioprotective effect against I/R-induced injury through the regulation of Nrf2/HO-1 signaling, suggesting that targeting miR-153, Nrf2, or both may serve as promising therapeutic targets for the alleviation of I/R-induced injury.

Journal ArticleDOI
Rui Ma1, Wei Wang1, Pei Yang1, Chunsheng Wang1, Dagang Guo1, Kunzheng Wang1 
TL;DR: It is demonstrated that the PLGA/Mg scaffolds possessed favorable antibacterial activity, and a higher content of Mg exhibited higher antib bacterial activity and inhibitory effects on cell attachment and proliferation than low Mg content.
Abstract: Bone defects are often combined with the risk of infection in the clinic, and artificial bone substitutes are often implanted to repair the defective bone. However, the implant materials are carriers for bacterial growth, and biofilm can form on the implant surface, which is difficult to eliminate using antibiotics and the host immune system. Magnesium (Mg) was previously reported to possess antibacterial potential. In this study, Mg was incorporated into poly(lactide-co-glycolic acid) (PLGA) to fabricate a PLGA/Mg scaffold using a low-temperature rapid-prototyping technique. All scaffolds were divided into three groups: PLGA (P), PLGA/10 wt% Mg with low Mg content (PM-L) and PLGA/20 wt% Mg with high Mg content (PM-H). The degradation test of the scaffolds was conducted by immersing them into the trihydroxymethyl aminomethane–hydrochloric acid (Tris–HCl) buffer solution and measuring the change of pH values and concentrations of Mg ions. The antibacterial activity of the scaffolds was investigated by the spread plate method, tissue culture plate method, scanning electron microscopy and confocal laser scanning microscopy. Additionally, the cell attachment and proliferation of the scaffolds were evaluated by the cell counting kit-8 (CCK-8) assay using MC3T3-E1 cells. The Mg-incorporated scaffolds degraded and released Mg ions and caused an increase in the pH value. Both PM-L and PM-H inhibited bacterial growth and biofilm formation, and PM-H exhibited higher antibacterial activity than PM-L after incubation for 24 and 48 h. Cell tests revealed that PM-H exerted a suppressive effect on cell attachment and proliferation. These findings demonstrated that the PLGA/Mg scaffolds possessed favorable antibacterial activity, and a higher content of Mg (20%) exhibited higher antibacterial activity and inhibitory effects on cell attachment and proliferation than low Mg content (10%).

Journal ArticleDOI
TL;DR: The designed and developed ACDO procedures thus far in terms of their working principles, working parameters, and technical aspects are highlighted for providing a better perspective of the development progress of ACDO devices for oral and maxillofacial reconstruction applications.
Abstract: Distraction osteogenesis (DO) is an emerging method for bone tissue reconstruction. In oral and maxillofacial reconstruction applications, DO is playing an important role as a technique without the need of bone graft. In addition, in a DO treatment procedure, a superior outcome could be achieved compared to conventional reconstruction techniques. Recently, a few automatic continuous distraction osteogenesis (ACDO) devices have been designed and developed to be used in human reconstruction applications. Experiments and animal studies have validated the functionality of the developed ACDO devices. It has shown that by using such ACDO devices in a DO procedure, compared to conventional manual DO methods, superior outcomes could be obtained. However, the application of such ACDO devices is still limited. More research and investigation need to be undertaken to study all requirements of ACDO devices to be used in successful human mandibular DO treatment. It is important to determine all requirements and standards that need to be considered and applied in the design and development of ACDO devices. The purpose of this review paper is to highlight the designed and developed ACDO procedures thus far in terms of their working principles, working parameters, and technical aspects for providing a better perspective of the development progress of ACDO devices for oral and maxillofacial reconstruction applications. In this paper, design principles, device specifications, and working parameters of ACDO devices are compared and discussed. Subsequently, current limitations and gaps have been addressed, and future works for enabling an ultimate automatic DO procedure have been suggested.

Journal ArticleDOI
Zhou Zhou1, Xingyun Ge1, Minxia Bian1, Tao Xu1, Na Li1, Jiamin Lu1, Jinhua Yu1 
TL;DR: CPP–ACP combined with TPP has a good remineralization effect on demineralized dentin slices and the hydroxyapatite crystals formed via remIneralization were found to closely resemble the natural dentin components.
Abstract: The remineralization approach mechanically occludes the exposed dentinal tubules mechanically, reduces the permeability of dentinal tubules and eliminates the symptoms of dentin hypersensitivity. The aim of the present study was to investigate the remineralization of demineralized dentin slices using CPP–ACP combined with TPP, and the research hypothesis was that CPP–ACP combined with TPP could result in extrafibrillar and intrafibrillar remineralization of dentin. Demineralized dentin slices were prepared and randomly divided into the following groups: A (the CPP–ACP group), B (the CPP–ACP + TPP combination group), C (the artificial saliva group), D (the negative control group), and E (the positive control group). Dentin slice samples from groups A, B and C were remineralized and the remineralization effect was evaluated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection–Fourier transform infrared spectroscopy (ATR–FTIR) and X-ray diffraction (XRD). Treatment with CPP–ACP combined with TPP occluded the dentinal tubules and resulted in remineralization of collagen fibrils. The hydroxyapatite crystals formed via remineralization were found to closely resemble the natural dentin components. CPP–ACP combined with TPP has a good remineralization effect on demineralized dentin slices.

Journal ArticleDOI
TL;DR: This work reviews literature on dynamic 3D heart models made of flexible materials for use with a mock circulatory system, which allow simulation of surgical procedures under mock physiological conditions, and are potentially very useful to clinical practice.
Abstract: Three-dimensional (3D) printing is widely used in medicine. Most research remains focused on forming rigid anatomical models, but moving from static models to dynamic functionality could greatly aid preoperative surgical planning. This work reviews literature on dynamic 3D heart models made of flexible materials for use with a mock circulatory system. Such models allow simulation of surgical procedures under mock physiological conditions, and are; therefore, potentially very useful to clinical practice. For example, anatomical models of mitral regurgitation could provide a better display of lesion area, while dynamic 3D models could further simulate in vitro hemodynamics. Dynamic 3D models could also be used in setting standards for certain parameters for function evaluation, such as flow reserve fraction in coronary heart disease. As a bridge between medical image and clinical aid, 3D printing is now gradually changing the traditional pattern of diagnosis and treatment.

Journal ArticleDOI
TL;DR: Combining HUC-MSCs with bone collagen particles provides a simple, rapid and suitable method to fill a bone defect site and treat of alveolar cleft bone defects.
Abstract: Alveolar cleft is a type of cleft lip and palate that seriously affects the physical and mental health of patients. In this study, a model of the alveolar cleft phenotype was established in rabbits to evaluate the effect of bone collagen particles combined with human umbilical cord mesenchymal stem cells (HUC-MSCs) on the repair of alveolar cleft bone defects. A model of alveolar clefts in rabbits was established by removing the incisors on the left side of the upper jaw bone collagen particles combined with HUC-MSCs that were then implanted in the defect area. Blood biochemical analysis was performed 3 months after surgery. Skull tissues were harvested for gross observation, and micro-focus computerised tomography (micro-CT) analysis. Tissues were harvested for histological and immunohistochemical staining. The experiments were repeated 6 months after surgery. Bone collagen particles and HUC-MSCs showed good biocompatibility. Bone collagen particles combined with HUC-MSCs were markedly better at inducing bone repair and regeneration than bone collagen particles alone. Combining HUC-MSCs with bone collagen particles provides a simple, rapid and suitable method to fill a bone defect site and treat of alveolar cleft bone defects.

Journal ArticleDOI
TL;DR: DVDMS results an effective sonosensitizer for the ultrasound-mediated cancer cell killing, and its anticancer effect seems to rely on its ability to produce ROS under ultrasound exposure.
Abstract: Colorectal cancer is the third leading cause of cancer-related deaths worldwide Sonodynamic therapy (SDT) is an emerging cancer therapy, and in contrast to photodynamic therapy, could non-invasively reach deep-seated tissues and locally activates a sonosensitizer preferentially accumulated in the tumor area to produce cytotoxicity effects In comparison with traditional treatments, SDT may serve as an alternative strategy for human colon cancer treatment Here, we investigated the sonodynamic effect using sinoporphyrin sodium (DVDMS) as a novel sonosensitizer on human colon cancer cells in vitro The absorption spectra of DVDMS revealed maximum absorption at 363 nm wavelength and emission peak at 635 nm Confocal microscopy images revealed the DVDMS was primarily localized in the cytoplasm, while no evident signal was detected within the nuclei Flow cytometry analysis showed rapid intracellular uptake of DVDMS by two types of human colon cancer cells (HCT116 and RKO) Cell viability of HCT116 was tolerant with the concentration of DVDMS up to 20 µg/mL, while the case of RKO was 5 µg/mL In comparison with the control group, the SDT-treated groups of these two types of human colon cancer cells showed significant increase in cellular apoptosis and necrosis ratio Increased intracellular reactive oxygen species (ROS) production was detected, indicating the involvement of ROS in mediating SDT effects DVDMS results an effective sonosensitizer for the ultrasound-mediated cancer cell killing, and its anticancer effect seems to rely on its ability to produce ROS under ultrasound exposure

Journal ArticleDOI
TL;DR: The accuracy of the newCTI technique was estimated to be high enough for most clinical applications, and future studies of animal models and human subjects should be pursued to show the clinical efficacy of the CTI technique.
Abstract: Electrical conductivity of a biological tissue at low frequencies can be approximately expressed as a tensor. Noting that cross-sectional imaging of a low-frequency conductivity tensor distribution inside the human body has wide clinical applications of many bioelectromagnetic phenomena, a new conductivity tensor imaging (CTI) technique has been lately developed using an MRI scanner. Since the technique is based on a few assumptions between mobility and diffusivity of ions and water molecules, experimental validations are needed before applying it to clinical studies. We designed two conductivity phantoms each with three compartments. The compartments were filled with electrolytes and/or giant vesicle suspensions. The giant vesicles were cell-like materials with thin insulating membranes. We controlled viscosity of the electrolytes and the giant vesicle suspensions to change ion mobility and therefore conductivity values. The conductivity values of the electrolytes and giant vesicle suspensions were measured using an impedance analyzer before CTI experiments. A 9.4-T research MRI scanner was used to reconstruct conductivity tensor images of the phantoms. The CTI technique successfully reconstructed conductivity tensor images of the phantoms with a voxel size of $$0.5\times 0.5\times 0.5\hbox { mm}^3$$. The relative $$L^2$$ errors between the conductivity values measured by the impedance analyzer and those reconstructed by the MRI scanner was between 1.1 and 11.5. The accuracy of the new CTI technique was estimated to be high enough for most clinical applications. Future studies of animal models and human subjects should be pursued to show the clinical efficacy of the CTI technique.

Journal ArticleDOI
TL;DR: The electrochemical evaluation platform could provide strong support for the evaluation and application of textile electrodes and was also effective in evaluating other bioelectric electrodes such as 3M electrode, stainless steel electrode, dry electrode and microneedle electrode.
Abstract: With the development of wearable health-monitoring technologies, a variety of textile electrodes have been produced and applied by researchers. However, there are no universal and effective methods even testing platforms for evaluating the skin–electrode electrochemical interface for textile electrodes because different human bodies have different skin characteristics. An electrochemical modeling and evaluation for textile electrodes to skin was proposed, and two electrochemical evaluation platforms (EEP) were set up based on two simulated skin models (SSM). First, skin–electrode electrochemical interface (SEEI) models for traditional wet electrodes and textile electrodes were analyzed. Based on the SEEI models and YY/T 0196-2005 (Chinese YY/T pharmaceutical industry standard for disposable ECG electrode), three skin–electrode electrochemical characteristics (SEEC), including skin–electrode static impedance (SESI), skin–electrode alternating current impedance (SEAI), and skin–electrode polarization voltage (SEPV), were proposed. Then, three electrochemical evaluation methods for textile electrodes to skin were proposed and analyzed, which were the correlation between SEEC and skin–electrode contact pressure (SECP), skin–electrode relative movement (SERM), and conduction loss of active signals (CLAS). Finally, an electrochemical evaluation platform was set up based on an active simulated skin model (ASSM) and passive simulated skin model (PSSM). 9 feature parameters based on the passive electrochemical evaluation platform (PEEP) and 11 feature parameters based on the active electrochemical evaluation platform (AEEP) were obtained for evaluating textile electrodes. And four kinds of textile electrode characteristics including SEEC, SECP, SERM, and CLAS were quantitatively measured based on the electrochemical evaluation platform, and the testing accuracy and range for these characteristics were measured separately. Finally, correlation between SEEC and SECP for 10 kinds of textile electrode samples was studied, and 14 electrochemical characteristics and four skin–electrode contact pressure characteristics were extracted. Experimental results showed that significant correlations were found between six SEEC characteristics and SECP characteristics, and the correlation coefficient between ACI_3 and USECP was the highest. And the polarization voltages of most dry electrode samples showed a downward trend with the increase of contact pressure. The electrochemical evaluation platform yielded effective experimental data and could provide strong support for the evaluation and application of textile electrodes, which was also effective in evaluating other bioelectric electrodes such as 3M electrode, stainless steel electrode, dry electrode and microneedle electrode.