scispace - formally typeset
Search or ask a question

Showing papers in "Chinese Science Bulletin in 2020"



Journal ArticleDOI
TL;DR: In this article, the wood-derived porous carbon (WPC) skeleton from natural wood was performed as a template, and excellent conductive and ultra-light 3D MXene aerogel was then constructed to prepare the 3D WPC skeleton as a microreactor.
Abstract: Renewable porous biochar and 2D MXene have attracted significant attention in high-end electromagnetic interference (EMI) shielding fields, due to unique orderly structures and excellent electrical conductivity (σ) value. In this work, the wood-derived porous carbon (WPC) skeleton from natural wood was performed as a template. And excellent conductive and ultra-light 3D MXene aerogel was then constructed to prepare the MXene aerogel/WPC composites, based on highly ordered honeycomb cells inner WPC as a microreactor. Higher carbonization temperature is more conducive to the graphitization degree of natural wood. MXene aerogel/WPC composites achieve the optimal EMI SE value of up to 71.3 dB at density as low as 0.197 g/cm3. Such wall-like “mortar-brick” structures (WPC skeleton as “mortar” and MXene aerogel as “brick”) not only effectively solve the unstable structure problem of MXene aerogel networks, but also greatly prolong the transmission paths of the electromagnetic waves and dissipate the incident electromagnetic waves in the form of heat and electric energy, thereby exhibiting the superior EMI shielding performance. In addition, MXene aerogel/WPC composites also exhibit good anisotropic compressive strength, excellent thermal insulation and flame retardant properties. Such ultra-light, green and efficient multi-functional bio-carbon-based composites have great application potential in the high-end EMI shielding fields of aerospace and national defence industry, etc.

332 citations


Journal ArticleDOI
TL;DR: In this paper, a rational design and construction of porous spherical NiO@NiMoO4 wrapped with PPy was reported for the application of high-performance supercapacitor (SC).
Abstract: In this work, a rational design and construction of porous spherical NiO@NiMoO4 wrapped with PPy was reported for the application of high-performance supercapacitor (SC). The results show that the NiMoO4 modification changes the morphology of NiO, and the hollow internal morphology combined with porous outer shell of NiO@NiMoO4 and NiO@NiMoO4@PPy hybrids shows an increased specific surface area (SSA), and then promotes the transfer of ions and electrons. The shell of NiMoO4 and PPy with high electronic conductivity decreases the charge-transfer reaction resistance of NiO, and then improves the electrochemical kinetics of NiO. At 20 A g−1, the initial capacitances of NiO, NiMoO4, NiO@NiMoO4 and NiO@NiMoO4@PPy are 456.0, 803.2, 764.4 and 941.6 F g−1, respectively. After 10,000 cycles, the corresponding capacitances are 346.8, 510.8, 641.2 and 904.8 F g−1, respectively. Especially, the initial capacitance of NiO@NiMoO4@PPy is 850.2 F g−1, and remains 655.2 F g−1 with a high retention of 77.1% at 30 A g−1 even after 30,000 cycles. The calculation result based on density function theory shows that the much stronger Mo-O bonds are crucial for stabilizing the NiO@NiMoO4 composite, resulting in a good cycling stability of these materials.

251 citations


Journal ArticleDOI
TL;DR: In this article, a ternary strategy has been considered as an efficient method to achieve high performance polymer solar cells (PSCs), and a power conversion efficiency (PCE) of 17.22% is achieved in the optimized teranary PSCs with 10-wt% molecular orbital (MFO) in acceptors.
Abstract: Ternary strategy has been considered as an efficient method to achieve high performance polymer solar cells (PSCs). A power conversion efficiency (PCE) of 17.22% is achieved in the optimized ternary PSCs with 10 wt% MF1 in acceptors. The over 8% PCE improvement by employing ternary strategy is attributed to the simultaneously increased JSC of 25.68 mA cm−2, VOC of 0.853 V and FF of 78.61% compared with Y6 based binary PSCs. The good compatibility of MF1 and Y6 can be confirmed from Raman mapping, contact angle, cyclic voltammetry and morphology, which is the prerequisite to form alloy-like state. Electron mobility in ternary active layers strongly depends on MF1 content in acceptors due to the different lowest unoccupied molecular orbital (LUMO) levels of Y6 and MF1, which can well explain the wave-like varied FF of ternary PSCs. The third-party certified PCE of 16.8% should be one of the highest values for single bulk heterojunction PSCs. This work provides sufficient references for selecting materials to achieve efficient ternary PSCs.

231 citations


Journal ArticleDOI
TL;DR: In this paper, the invariant mass spectrum of the LHCb collision data at center-of-mass energies of 7, $8, $13, and $13\mathrm{\,TeV} was studied.
Abstract: Using proton-proton collision data at centre-of-mass energies of $\sqrt{s} = 7$, $8$ and $13\mathrm{\,TeV}$ recorded by the LHCb experiment at the Large Hadron Collider, corresponding to an integrated luminosity of $9\mathrm{\,fb}^{-1}$, the invariant mass spectrum of $J/\psi$ pairs is studied. A narrow structure around $6.9\mathrm{\,GeV/}c^2$ matching the lineshape of a resonance and a broad structure just above twice the $J/\psi$ mass are observed. The deviation of the data from nonresonant $J/\psi$-pair production is above five standard deviations in the mass region between $6.2$ and $7.4\mathrm{\,GeV/}c^2$, covering predicted masses of states composed of four charm quarks. The mass and natural width of the narrow $X(6900)$ structure are measured assuming a Breit--Wigner lineshape.

204 citations


Journal ArticleDOI
TL;DR: For example, in this article, the authors present a set of urban land use maps at the national and global scales that are derived from the same or consistent data sources with similar or compatible classification systems and mapping methods.
Abstract: Land use reflects human activities on land. Urban land use is the highest level human alteration on Earth, and it is rapidly changing due to population increase and urbanization. Urban areas have widespread effects on local hydrology, climate, biodiversity, and food production. However, maps, that contain knowledge on the distribution, pattern and composition of various land use types in urban areas, are limited to city level. The mapping standard on data sources, methods, land use classification schemes varies from city to city, due to differences in financial input and skills of mapping personnel. To address various national and global environmental challenges caused by urbanization, it is important to have urban land uses at the national and global scales that are derived from the same or consistent data sources with the same or compatible classification systems and mapping methods. This is because, only with urban land use maps produced with similar criteria, consistent environmental policies can be made, and action efforts can be compared and assessed for large scale environmental administration. However, despite of the fact that a number of urban-extent maps exist at global scales [3,4], more detailed urban land use maps do not exist at the same scale. Even at big country or regional levels such as for the United States, China and European Union, consistent land use mapping efforts are rare.

187 citations


Journal ArticleDOI
TL;DR: In this article, a green electrically conductive Ag nanowire (AgNW)/cellulose nanofiber (CNF) hybrid nanopaper was fabricated to prepare flexible sensors using the facial solution blending and vacuum filtration technique.
Abstract: With the rapid development of smart wearable devices, flexible and biodegradable sensors are in urgent needs. In this study, “green” electrically conductive Ag nanowire (AgNW)/cellulose nanofiber (CNF) hybrid nanopaper was fabricated to prepare flexible sensors using the facial solution blending and vacuum filtration technique. The amphiphilic property of cellulose is beneficial for the homogeneous dispersion of AgNW to construct effective electrically conductive networks. Two different types of strain sensors were designed to study their applications in strain sensing. One was the tensile strain sensor where the hybrid nanopaper was sandwiched between two thermoplastic polyurethane (TPU) films through hot compression, and special micro-crack structure was constructed through the pre-strain process to enhance the sensitivity. Interestingly, typical pre-strain dependent strain sensing behavior was observed due to different crack densities constructed under different pre-strains. As a result, it exhibited an ultralow detection limit as low as 0.2%, good reproducibility under different strains and excellent stability and durability during 500 cycles (1% strain, 0.5 mm/min). The other was the bending strain sensor where the hybrid nanopaper was adhered onto TPU film, showing stable and recoverable linearly sensing behavior towards two different bending modes (tension and compression). Importantly, the bending sensor displayed great potential for human motion and physiological signal detection. Furthermore, the hybrid nanopaper also exhibited stable and reproducible negative temperature sensing behavior when it was served as a temperature sensor. This study provides a guideline for fabricating flexible and biodegradable sensors.

185 citations


Journal ArticleDOI
TL;DR: In this article, an advanced Na3V2(PO4)2F3@C cathode is prepared successfully for sodium-ion full cells, which can not only enhance the electronic conductivity and electrode kinetics, but also unexpectedly adjust the dis-/charging plateaux at different voltage ranges to increase the mean voltage (from 3.59 to 3.71 V) and energy density (from 336.0 to 428.5 Wh kg−1) of phosphate cathode material.
Abstract: One main challenge for phosphate cathodes in sodium-ion batteries (SIBs) is to increase the working voltage and energy density to promote its practicability. Herein, an advanced Na3V2(PO4)2F3@C cathode is prepared successfully for sodium-ion full cells. It is revealed that, carbon coating can not only enhance the electronic conductivity and electrode kinetics of Na3V2(PO4)2F3@C and inhibit the growth of particles (i.e., shorten the Na+-migration path), but also unexpectedly for the first time adjust the dis-/charging plateaux at different voltage ranges to increase the mean voltage (from 3.59 to 3.71 V) and energy density (from 336.0 to 428.5 Wh kg−1) of phosphate cathode material. As a result, when used as cathode for SIBs, the prepared Na3V2(PO4)2F3@C delivers much improved electrochemical properties in terms of larger specifc capacity (115.9 vs. 93.5 mAh g−1), more outstanding high-rate capability (e.g., 87.3 vs. 60.5 mAh g−1 at 10 C), higher energy density, and better cycling performance, compared to pristine Na3V2(PO4)2F3. Reasons for the enhanced electrochemical properties include ionicity enhancement of lattice induced by carbon coating, improved electrode kinetics and electronic conductivity, and high stability of lattice, which is elucidated clearly through the contrastive characterization and electrochemical studies. Moreover, excellent energy-storage performance in sodium-ion full cells further demonstrate the extremely high possibility of Na3V2(PO4)2F3@C cathode for practical applications.

176 citations


Journal ArticleDOI
TL;DR: The first device-independent quantum secure direct communication protocol (DI-QSDC) is put forward and its security and communication efficiency against collective attacks are analyzed and noiseless linear amplification (NLA) protocol and entanglement purification protocol (EPP) are modified.
Abstract: “Device-independent” not only represents a relaxation of the security assumptions about the internal working of the quantum devices, but also can enhance the security of the quantum communication. In the paper, we put forward the first device-independent quantum secure direct communication (DI-QSDC) protocol and analyze its security and communication efficiency against collective attacks. Under practical noisy quantum channel condition, the photon transmission loss and photon state decoherence would reduce DI-QSDC’s communication quality and threaten its absolute security. For solving the photon transmission loss and decoherence problems, we adopt noiseless linear amplification (NLA) protocol and entanglement purification protocol (EPP) to modify the DI-QSDC protocol. With the help of the NLA and EPP, we can guarantee DI-QSDC’s absolute security and effectively improve its communication quality.

176 citations


Journal ArticleDOI
TL;DR: In this article, the performance of a homologous series of Zn-based layered double hydroxide (ZnM-LDH) photocatalysts for CO2 reduction was compared.
Abstract: Photocatalytic CO2 reduction holds promise as a future technology for the manufacture of fuels and commodity chemicals. However, factors controlling product selectivity remain poorly understood. Herein, we compared the performance of a homologous series of Zn-based layered double hydroxide (ZnM-LDH) photocatalysts for CO2 reduction. By varying the trivalent or tetravalent metal cations in the ZnM-LDH photocatalysts (M = Ti4+, Fe3+, Co3+, Ga3+, Al3+), the product selectivity of the reaction could be precisely controlled. ZnTi-LDH afforded CH4 as the main reduction product; ZnFe-LDH and ZnCo-LDH yielded H2 exclusively from water splitting; whilst ZnGa-LDH and ZnAl-LDH generated CO. In-situ diffuse reflectance infrared measurements, valence band XPS and density function theory calculations were applied to rationalize the CO2 reduction selectivities of the different ZnM-LDH photocatalysts. The analyses revealed that the d-band center (ed) position of the M3+ or M4+ cations controlled the adsorption strength of CO2 and thus the selectivity to carbon-containing products or H2. Cations with d-band centers relatively close to the Fermi level (Ti4+, Ga3+ and Al3+) adsorbed CO2 strongly yielding CH4 or CO, whereas metal cations with d-band centers further from the Fermi level (Fe3+ and Co3+) adsorbed CO2 poorly, thereby yielding H2 only (from water splitting). Our findings clarify the role of trivalent and tetravalent metal cations in LDH photocatalysts for the selective CO2 reduction, paving new ways for the development of improved LDH photocatalyst with high selectivities to specific products.

167 citations


Journal ArticleDOI
TL;DR: In this article, the configuration of photothermal materials, as well as warm and cold evaporation surfaces, was designed to improve the performance of solar-steam generation in desalination and wastewater treatment.
Abstract: Interfacial solar-steam generation is a promising and cost-effective technology for both desalination and wastewater treatment. This process uses a photothermal evaporator to absorb sunlight and convert it into heat for water evaporation. However solar-steam generation can be somewhat inefficient due to energy losses via conduction, convection and radiation. Thus, efficient energy management is crucial for optimizing the performance of solar-steam generation. Here, via elaborate design of the configuration of photothermal materials, as well as warm and cold evaporation surfaces, performance in solar evaporation was significantly enhanced. This was achieved via a simultaneous reduction in energy loss with a net increase in energy gain from the environment, and recycling of the latent heat released from vapor condensation, diffusive reflectance, thermal radiation and convection from the evaporation surface. Overall, by using the new strategy, an evaporation rate of 2.94 kg m−2 h−1, with a corresponding energy efficiency of solar-steam generation beyond theoretical limit was achieved.


Journal ArticleDOI
TL;DR: In this article, a series of opaque and semitransparent polymer solar cells (PSCs) were fabricated with PM6:Y6 as active layers, and 100 nm Al or 1‾nm Au/(20, 15, 10´nm) Ag layer as electrode, respectively.
Abstract: A series of opaque and semitransparent polymer solar cells (PSCs) were fabricated with PM6:Y6 as active layers, and 100 nm Al or 1 nm Au/(20, 15, 10 nm) Ag layer as electrode, respectively. The power conversion efficiency (PCE) of opaque PSCs arrives to 15.83% based on the optimized active layer with a thickness of 100 nm, resulting from the well-balanced photon harvesting and charge collection. Meanwhile, the 100 nm PM6:Y6 blend film exhibits a 50.5% average visible transmittance (AVT), which has great potential in preparing efficient semitransparent PSCs. The semitransparent electrodes were fabricated with 1 nm Au and different thick Ag layers, exhibiting a relatively high transmittance in visible light range and relatively low transmittance in near infrared range. The PCE and AVT of the semitransparent PSCs can be adjusted from 14.20% to 12.37% and from 8.9% to 18.6% along with Ag layer thickness decreasing from 20 to 10 nm, respectively, which are impressive values among the reported semitransparent PSCs.

Journal ArticleDOI
TL;DR: In this paper, the authors theoretically and experimentally demonstrate that a compact broadband acoustic sink that quasi-perfectly absorbs broadband arriving sound waves can be achieved with coherently coupled "weak resonances" (resonant sound absorbing systems with low absorption peaks).
Abstract: Broadband sound sink/absorber via a structure with deep sub-wavelength thickness is of great and continuing interest in physics and engineering communities. An intuitive technique extensively used is to combine components (resonators) with quasi-perfect absorption to piece together a broad absorbing band, but the requirement of quasi-perfect absorption substantially places a very strict restriction on the impedance and thickness of the components. Here, we theoretically and experimentally demonstrate that a compact broadband acoustic sink that quasi-perfectly absorbs broadband arriving sound waves can be achieved with coherently coupled “weak resonances” (resonant sound absorbing systems with low absorption peaks). Although each component exhibits rather low absorption peak alone, via manipulating the coherent coupling effect among the components, they collectively provide a remarkably improved performance over a wide frequency range with a significantly compressed thickness. To illustrate the design principle, a hybrid metasurface utilizing the coaction of parallel and cascade couplings is presented, which possesses an average absorption coefficient of 0.957 in the quasi-perfect band ( α > 0.9 ) from 870 to 3224 Hz with a thickness of only 3.9 cm. Our results open new avenues for the development of novel and highly efficient acoustic absorbers against low frequency noise, and more essentially, suggest an efficient approach towards on-demand acoustic impedance engineering in broadband.

Journal ArticleDOI
TL;DR: In this article, an efficient and highly stable OSC, containing a novel polymer donor and a non-fullerene acceptor system, is reported, which is based on an inverted device structure that utilizes a self-assembled fullerene monolayer (C60-SAM) as the cathode modification layer.
Abstract: With recent advances in the power conversion efficiency (PCE) of organic solar cells (OSCs) based on novel donor and non-fullerene acceptor (NFAs), improving the stability of these systems has become the most important issue for their practical applications. Herein, an efficient and highly stable OSC, containing a novel polymer donor and a non-fullerene acceptor system, is reported. The OSC is based on an inverted device structure that utilizes a self-assembled fullerene monolayer (C60-SAM) as the cathode modification layer, and an efficient and highly stable OSC composes of a polymer donor of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b’]dithiophene-alt-3-fluorothie-no[3,4-b]thiophene-2-carboxylate] (PTB7-Th) and a non-fullerene acceptor of (2,2′-((2Z,2′Z)-(((4,4,9,9-Tetrakis(4-hexylphenyl)-4,9-dihydro-sindaceno[1,2-b:5,6-b']dithiophene-2,7-diyl)bis(4-((2ethylhexyl)oxy)thiophene-5,2-diyl))bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene −2,1-diylidene))dimalononitrile) (IEICO-4F) is presented, showing a PCE of 10%. It further achieves an extrapolated T80 lifetime (the time required to reach 80% of initial performance) of 34,000 h, operating under one sun illumination equivalent. Based on an estimated solar irradiance of 1500 kWh/(m2 year) for China, a potential lifetime of 22 years is inferred for the OSC. Further investigation reveals that the reported C60-SAM modification stabilizes the OSC active layer morphology by lowering the surface energy of the underlying ZnO electron transport layer and suppressing trap-assisted recombination, thereby improving photostability. The results of this work establish important guidelines for the development of non-fullerene based OSCs with enhanced stability and pave the way for the commercialization of OSC technology.

Journal ArticleDOI
TL;DR: In this article, the authors introduced oxygen vacancies (OVs) on the two-dimensional Bi4Ti3O12 ultrathin nanosheets via a combined hydrothermal and post-reduction process.
Abstract: Reduction of CO2 to solar fuels by artificial photosynthesis technology has attracted considerable attention. However, insufficient separation of charge carriers and weak CO2 adsorption hamper the photocatalytic CO2 reduction activity. Herein, we tackle these challenges by introducing oxygen vacancies (OVs) on the two-dimensional Bi4Ti3O12 ultrathin nanosheets via a combined hydrothermal and post-reduction process. Selective photodeposition experiment of Pt over Bi4Ti3O12 discloses that the ultrathin structure shortens the migration distance of photo-induced electrons from bulk to the surface, benefiting the fast participation in the CO2 reduction reaction. The introduction of OVs on ultrathin Bi4Ti3O12 nanosheets leads to enormous amelioration on surface state and electronic structure, thereby resulting in enhanced CO2 adsorption, photoabsorption and charge separation efficiency. The photocatalytic experiments uncover that ultrathin Bi4Ti3O12 nanosheets with OVs reveal a largely enhanced CO2 photoreduction activity for producing CO with a rate of 11.7 μmol g−1 h−1 in the gas–solid system, ~3.2 times higher than that of bulk Bi4Ti3O12. This work not only yields efficient ultrathin photocatalysts with OVs, but also furthers our understanding on enhancing CO2 reduction via cooperative tactics.

Journal ArticleDOI
TL;DR: In this paper, the authors developed WS2/NiO hybrid with heterostructures and found that the enhanced EMA performance was caused by the addition of magnetic NiO, which could result in the interfaces between WS2 and NiO being responsible for the synergetic magnetic loss and dielectric loss.
Abstract: WS2 nanomaterials have attracted great attention in the field of electromagnetic wave absorption due to their high specific surface area, layered structure, and peculiar electronic properties. However, further improvements on their limited electromagnetic absorbing (EMA) capacity and bandwidth are urgently required for their practical application as EMA absorbents. In this work, WS2/NiO hybrids with heterostructures are prepared by a hydrothermal method and developed into EMA absorbents. The maximum reflection loss of the hybrids with 20% NiO loading could reach −53.31 dB at a thickness of 4.30 mm; the bandwidth with a reflection loss value of less than −10 dB is determined to be 13.46 GHz (4.54–18 GHz) when the thickness of the absorbent is between 3.5 and 5.5 mm. It is found that the enhanced EMA performance of WS2/NiO hybrids is caused by the addition of magnetic NiO, which could result in the interfaces between WS2 and NiO being responsible for the synergetic magnetic loss and dielectric loss in the hybrids. This work provides a new approach for the design of excellent EMA materials for practical applications.


Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that the OER performance of cubic Co3O4 electrocatalyst is improved when they are anchored on delaminated two-dimensional (2D) Ti3C2 MXene nanosheets.
Abstract: Rational design and controllable synthesis of efficient electrocatalysts for water oxidation is of significant importance for the development of promising energy conversion systems, in particular integrated photoelectrochemical water splitting devices. Cobalt oxide (Co3O4) nanostructures with mixed valences (II,III) have been regarded as promising electrocatalysts for the oxygen evolution reaction (OER). They are able to promote catalytic support of OER but with only modest activity. Here, we demonstrate that the OER performance of cubic Co3O4 electrocatalyst is obviously improved when they are anchored on delaminated two-dimensional (2D) Ti3C2 MXene nanosheets. Upon activation the overpotential of the hybrid catalyst delivers 300 mV at a current density of 10 mA cm−2 in basic solutions, which is remarkably lower than those of Ti3C2 MXene and Co3O4 nanocubes. The strong interfacial electrostatic interactions between two components contribute to the exceptional catalytic performance and stability. The enhanced OER activity and facile synthesis make these Co3O4 nanocubes-decorated ultrathin 2D Ti3C2 MXene nanosheets useful for constructing efficient and stable electrodes for high-performance electrochemical water splitting.

Journal ArticleDOI
TL;DR: In this article, a decorated co-electrodeposition method for CO2 electroreduction to formate was proposed, and the Sn-Cu alloy showed high formate Faradaic efficiency.
Abstract: To acquire the synergy effects between Sn and Cu for the jointly high Faradaic efficiency and current density, we develop a novel strategy to design the Sn-Cu alloy catalyst via a decorated co-electrodeposition method for CO2 electroreduction to formate. The Sn-Cu alloy shows high formate Faradaic efficiency of 82.3% ± 2.1% and total C1 products Faradaic efficiency of 90.0% ± 2.7% at −1.14 V vs. reversible hydrogen electrode (RHE). The current density and mass activity of formate reach as high as (79.0 ± 0.4) mA cm−2 and (1490.6 ± 7.5) mA mg−1 at −1.14 V vs. RHE. Theoretical calculations suggest that Sn-Cu alloy can obtain high Faradaic efficiency for CO2 electroreduction by suppressing the competitive hydrogen evolution reaction and that the formate formation follows the path of CO2 → HCOO* → HCOOH. The stepped (2 1 1) surface of Sn-Cu alloy is beneficial towards selective formate production.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the changes in water and sediment fluxes and their drivers for 4307 large rivers worldwide (basin area ≥ 1000 km2) based on the longest available records.
Abstract: Water and sediment transport from rivers to oceans is of primary importance in global geochemical cycle. Against the background of global change, this study examines the changes in water and sediment fluxes and their drivers for 4307 large rivers worldwide (basin area ≥1000 km2) based on the longest available records. Here we find that 24% of the world’s large rivers experienced significant changes in water flux and 40% in sediment flux, most notably declining trends in water and sediment fluxes in Asia’s large rivers and an increasing trend in suspended sediment concentrations in the Amazon River. In particular, nine binary patterns of changes in water-sediment fluxes are interpreted in terms of climate change and human impacts. The change of precipitation is found significantly correlated to the change of water flux in 71% of the world’s large rivers, while dam operation and irrigation rather control the change of sediment flux in intensively managed catchments. Globally, the annual water flux from rivers to sea of the recent years remained stable compared with the long-time average annual value, while the sediment flux has decreased by 20.8%.

Journal ArticleDOI
TL;DR: In this article, a meta-analysis and questionnaire-based surveys revealed that grazing exclusion with fences was effective in promoting aboveground vegetation growth in degraded alpine meadows and for up to eight years in the alpine steppes of the Tibetan plateau.
Abstract: Grazing exclusion using fences is a key policy being applied by the Chinese government to rehabilitate degraded grasslands on the Tibetan Plateau (TP) and elsewhere. However, there is a limited understanding of the effects of grazing exclusion on alpine ecosystem functions and services and its impacts on herders’ livelihoods. Our meta-analyses and questionnaire-based surveys revealed that grazing exclusion with fences was effective in promoting aboveground vegetation growth for up to four years in degraded alpine meadows and for up to eight years in the alpine steppes of the TP. Longer-term fencing did not bring any ecological and economic benefits. We also found that fencing hindered wildlife movement, increased grazing pressure in unfenced areas, lowered the satisfaction of herders, and rendered substantial financial costs to both regional and national governments. We recommend that traditional free grazing should be encouraged if applicable, short-term fencing (for 4–8 years) should be adopted in severely degraded grasslands, and fencing should be avoided in key wildlife habitat areas, especially the protected large mammal species.

Journal ArticleDOI
TL;DR: An overview of the development of high-performance tactile sensors applied in intelligent systems with excellent application prospects in many fields, such as wearable devices, medical treatment, artificial limbs and robotics is presented.
Abstract: With the rapid development of intelligent technology, tactile sensors as sensing devices constitute the core foundation of intelligent systems. Biological organs that can sense various stimuli play vital roles in the interaction between human beings and the external environment. Inspired by this fact, research on skin-like tactile sensors with multifunctionality and high performance has attracted extensive attention. An overview of the development of high-performance tactile sensors applied in intelligent systems is systematically presented. First, the development of tactile sensors endowed with stretchability, self-healing, biodegradability, high resolution and self-powered capability is discussed. Then, for intelligent systems, tactile sensors with excellent application prospects in many fields, such as wearable devices, medical treatment, artificial limbs and robotics, are presented. Finally, the future prospects of tactile sensors for intelligent systems are discussed.

Journal ArticleDOI
TL;DR: In this article, dual-functional NiCo2S4 polyhedral architectures with outstanding electrochemical performance for supercapacitors and lithium-ion batteries have been rationally designed and successfully synthesized by a hydrothermal method.
Abstract: Dual-functional NiCo2S4 polyhedral architectures with outstanding electrochemical performance for supercapacitors and lithium-ion batteries (LIBs) have been rationally designed and successfully synthesized by a hydrothermal method. The as-synthesized NiCo2S4 electrode for supercapacitor exhibits an outstanding specific capacitance of 1298 F g−1 at 1 A g−1 and an excellent rate capability of ~80.4% at 20 A g−1. Besides, capacitance retention of 90.44% is realized after 8000 cycles. In addition, the NiCo2S4 as anode in LIBs delivers high initial charge/discharge capacities of 807.6 and 972.8 mAh g−1 at 0.5 C as well as good rate capability. In view of these points, this work provides a feasible pathway for assembling electrodes and devices with excellent electrochemical properties in the next generation energy storage applications.

Journal ArticleDOI
TL;DR: In this paper, a facile and effective impregnation combined with photo-deposition approach was adopted to deposit cadmium sulfide (CdS) nanoparticles on CTF-1, a covalent triazine-based frameworks (CTFs).
Abstract: A facile and effective impregnation combined with photo-deposition approach was adopted to deposit cadmium sulfide (CdS) nanoparticles on CTF-1, a covalent triazine-based frameworks (CTFs). In this system, CTF-1 not only acted as supporter but also served as photocatalyst and electron donor. The performance of the obtained CdS deposited CTF-1 (CdS-CTF-1) nanocomposite was evaluated by H2 evolution reaction under visible light irradiation. As a result, CdS-CTF-1 exhibited high H2 production from water, far surpassing the CdS/CTF-1 nanocomposite, in which CdS was deposited via solvothermal method. The high activity of CdS-CTF-1 was attributed to the confined CdS nanoparticles with small size, leading to expose more active sites. In addition, time-resolved spectroscopy indicated that the superior performance of CdS-CTF-1 also can be ascribed to the fast electron transfer rate and injection efficiency (KET = 0.18 × 109 s−1, ηinj = 39.38%) between CdS and CTF-1 layers, which are 3.83 times faster and 4.84 times higher than that of CdS/CTF-1 nanocomposite. This work represents the first example on using covalent organic frameworks (COFs) as a support and electron-donor for fabricating novel CdS-COF nanocomposite system and its potential application in solar energy transformations.

Journal ArticleDOI
TL;DR: In this paper, the synergistic effects of crystal structure and oxygen vacancy on the photocatalytic activity of Bi2O3 polymorphs at an atomic level for the first time were unraveled.
Abstract: This work unraveled the synergistic effects of crystal structure and oxygen vacancy on the photocatalytic activity of Bi2O3 polymorphs at an atomic level for the first time. The artificial oxygen vacancy is introduced into α-Bi2O3 and β-Bi2O3 via a facile method to engineer the band structures and transportation of carriers and redox reaction for highly enhanced photocatalysis. After the optimization, the photocatalytic NO removal ratio on defective β-Bi2O3 was increased from 25.2% to 52.0% under visible light irradiation. On defective α-Bi2O3, the NO removal ratio is just increased from 7.3% to 20.1%. The difference in the activity enhancement is associated with the different structure of crystal phase and oxygen vacancy. The density functional theory (DFT) calculation and experimental results confirm that the oxygen vacancy in α-Bi2O3 and β-Bi2O3 could promote the activation of reactants and intermediate as active centers. The crystal structure and oxygen vacancy could synergistically regulate the electrons transfer pathway. On defective β-Bi2O3 with tunnel structure, the reactants activation and charge transfer were more efficient than that on α-Bi2O3 with zigzag-type configuration because the defect structures on the surface of α-Bi2O3 and β-Bi2O3 were different. Moreover, the in situ FT-IR revealed the mechanisms of photocatalytic NO oxidation. The photocatalytic NO conversion pathway on α-Bi2O3 and β-Bi2O3 can be tuned by the different surface defect structures. This work could provide a novel strategy to regulate the photocatalytic activity and conversion pathway via the synergistic effects of crystal structure and oxygen vacancy.

Journal ArticleDOI
Xiaoming Deng1, Yao Chen1, Jieya Wen1, Yun Xu1, Jian Zhu1, Zhenfeng Bian1 
TL;DR: In this paper, the effect of polyaniline thickness on Cr(VI) activity and stability of photocatalytic reduction was studied by adjusting the content of PANI on Mesoporous TiO2 (MT) surface.
Abstract: In order to develop efficient photocatalysts, great efforts have been made to reduce hexavalent chromium to trivalent chromium. The photocatalytic efficiency of this reduction depends largely on the adsorption and diffusion of hexavalent chromium ions on the surface of the photocatalyst. In this paper, polyaniline-TiO2 composite can effectively improve the photocatalytic reduction performance and stability of hexavalent chromium ion. The effect of polyaniline (PANI) thickness on Cr(VI) activity and stability of photocatalytic reduction was studied by adjusting the content of PANI on Mesoporous TiO2 (MT) surface. Under the irradiation conditions, the reaction results showed that the reduction rate was 100%, and the maximum reaction rate reached 0.62 min−1 when the PANI modification was 3.0%. Moreover, the results showed that the reduction performance remained 100% after ten cycles. The main reason is that the PANI modified on the surface of TiO2 is rich in positively charged amino group, which can efficiently adsorb the reactant Cr(VI), and make the product Cr(III) leave the reaction interface quickly, thus ensuring the performance of photocatalyst.

Journal ArticleDOI
TL;DR: In this paper, a strategy to tune the ligand electronic and steric effects in a concerted fashion is reported, which can lead to simultaneous enhancement of several parameters (activity, stability, polymer molecular weight, melting point, branching density) for both the nickel and palladium catalysts.
Abstract: For transition metal-based olefin polymerization catalysts, ligand steric and electronic effects can strongly influence important catalytic properties. However, the simultaneous tuning of both steric and electronic effects has not been explored in most of the previous studies. In this contribution, a strategy to tune the ligand electronic and steric effects in a concerted fashion is reported. In such a system, both dibenzhydryl groups and multiple methoxy/fluoro groups were installed in α-diimine ligands. In addition to strongly influencing ligand electronics, the methoxy/fluoro groups can interact with the dibenzhydryl groups and efficiently increase ligand sterics. In ethylene polymerization, this concurrent tuning of electronic and steric effects can lead to simultaneous enhancement of several parameters (activity, stability, polymer molecular weight, melting point, branching density) for both the nickel and palladium catalysts. The effectiveness of this strategy is highly attractive for future studies in other catalytic systems.

Journal ArticleDOI
TL;DR: In this paper, extreme precipitation changes under different levels of global warming and their associated impacts on populations in China are investigated using multimodel climate projections from the Coupled Model Intercomparison Project Phase 5 and population projections under Shared Socio-economic Pathways.
Abstract: Precipitation-related extremes are among the most impact-relevant consequences of a warmer climate, particularly for China, a region vulnerable to global warming and with a large population. Understanding the impacts and risks induced by future extreme precipitation changes is critical for mitigation and adaptation planning. Here, extreme precipitation changes under different levels of global warming and their associated impacts on populations in China are investigated using multimodel climate projections from the Coupled Model Intercomparison Project Phase 5 and population projections under Shared Socio-economic Pathways. Heavy precipitation would intensify with warming across China at a rate of 6.52% (5.22%–8.57%) per degree of global warming. The longest dry spell length would increase (decrease) south (north) of ~34°N. The low warming target of the Paris Agreement could substantially reduce the extreme precipitation related impacts compared to higher warming levels. For the area weighted average changes, the intensification in wet extremes could be reduced by 3.22%, 9.42% and 16.70% over China, and the lengthening of dry spells could be reduced by 0.72%, 4.75% and 5.31% in southeastern China, respectively, if global warming is limited to 1.5 °C as compared to 2, 3 and 4 °C. The Southeastern China is the hotspot of enhanced impacts due to the dense population. The impacts on populations induced by extreme precipitation changes are dominated by climate change, while future population redistribution plays a minor role.