scispace - formally typeset
Search or ask a question

Showing papers in "Cognitive, Affective, & Behavioral Neuroscience in 2018"


Journal ArticleDOI
TL;DR: The present findings add important pieces to the understanding of the neurophysiological mechanisms of conflict-triggered adjustment of cognitive control by suggesting that tVNS increases behavioral and electrophysiological markers of adaptation to conflict.
Abstract: Response conflicts play a prominent role in the flexible adaptation of behavior as they represent context-signals that indicate the necessity for the recruitment of cognitive control. Previous studies have highlighted the functional roles of the affectively aversive and arousing quality of the conflict signal in triggering the adaptation process. To further test this potential link with arousal, participants performed a response conflict task in two separate sessions with either transcutaneous vagus nerve stimulation (tVNS), which is assumed to activate the locus coeruleus-noradrenaline (LC-NE) system, or with neutral sham stimulation. In both sessions the N2 and P3 event-related potentials (ERP) were assessed. In line with previous findings, conflict interference, the N2 and P3 amplitude were reduced after conflict. Most importantly, this adaptation to conflict was enhanced under tVNS compared to sham stimulation for conflict interference and the N2 amplitude. No effect of tVNS on the P3 component was found. These findings suggest that tVNS increases behavioral and electrophysiological markers of adaptation to conflict. Results are discussed in the context of the potentially underlying LC-NE and other neuromodulatory (e.g., GABA) systems. The present findings add important pieces to the understanding of the neurophysiological mechanisms of conflict-triggered adjustment of cognitive control.

80 citations


Journal ArticleDOI
TL;DR: Across the four experiments, the results suggested that in situations that promoted on-task behaviors and focused external attention, mind wandering was associated with lowered arousal, as seen by smaller tonic pupil diameters and smaller phasic pupillary responses.
Abstract: In four experiments, the association between arousal state and different mind-wandering states was examined. Participants performed a sustained attention task while pupil responses were continuously recorded. Periodically during the task, participants were presented with thought probes to determine if they were on task or mind wandering. Across the four experiments, the results suggested that in situations that promoted on-task behaviors and focused external attention, mind wandering was associated with lowered arousal, as seen by smaller tonic pupil diameters and smaller phasic pupillary responses. However, in situations that promoted a more internal focus of attention, there were no differences between on-task states and mind wandering in tonic pupil diameter (although differences emerged for phasic pupillary responses), suggesting similar arousal levels. Furthermore, across the four experiments, mind blanking and mind wandering dissociated in terms of whether the situation promoted focused external attention or focused internal attention. These results are broadly consistent with the notion that mind wandering is a heterogeneous construct, with different forms of mind wandering being associated with different arousal states, and suggest that a combination of behavioral and pupillary measures can be used to track these various states.

79 citations


Journal ArticleDOI
TL;DR: In a sample of 118 participants, proneness to SCF was reliably predicted by low error-related activation of a performance-monitoring network, low posterror rIFG activation, and reduced posterror slowing.
Abstract: Despite their immense relevance, the neurocognitive mechanisms underlying real-life self-control failures (SCFs) are insufficiently understood. Whereas previous studies have shown that SCFs were associated with decreased activity in the right inferior frontal gyrus (rIFG; a region involved in cognitive control), here we consider the possibility that the reduced implementation of cognitive control in individuals with low self-control may be due to impaired performance monitoring. Following a brain-as-predictor approach, we combined experience sampling of daily SCFs with functional magnetic resonance imaging (fMRI) in a Stroop task. In our sample of 118 participants, proneness to SCF was reliably predicted by low error-related activation of a performance-monitoring network (comprising anterior mid-cingulate cortex, presupplementary motor area, and anterior insula), low posterror rIFG activation, and reduced posterror slowing. Remarkably, these neural and behavioral measures predicted variability in SCFs beyond what was predicted by self-reported trait self-control. These results suggest that real-life SCFs may result from deficient performance monitoring, leading to reduced recruitment of cognitive control after responses that conflict with superordinate goals.

71 citations


Journal ArticleDOI
TL;DR: A model-based analysis of task performance suggested that subjects chose to observe until a critical evidence threshold was reached, and a neural signature of this evidence accumulation process in the ventromedial prefrontal cortex was observed.
Abstract: Balancing exploration and exploitation is a fundamental problem in reinforcement learning. Previous neuroimaging studies of the exploration-exploitation dilemma could not completely disentangle these two processes, making it difficult to unambiguously identify their neural signatures. We overcome this problem using a task in which subjects can either observe (pure exploration) or bet (pure exploitation). Insula and dorsal anterior cingulate cortex showed significantly greater activity on observe trials compared to bet trials, suggesting that these regions play a role in driving exploration. A model-based analysis of task performance suggested that subjects chose to observe until a critical evidence threshold was reached. We observed a neural signature of this evidence accumulation process in the ventromedial prefrontal cortex. These findings support theories positing an important role for anterior cingulate cortex in exploration, while also providing a new perspective on the roles of insula and ventromedial prefrontal cortex.

69 citations


Journal ArticleDOI
TL;DR: The neurovisceral integration model is tested by examining the relationship between vagally mediated resting-state HRV and performance in a task-switching paradigm that provides a relatively process-pure measure of cognitive flexibility and indicates that higher levels of vagallymediated resting- state HRV promote cognitive flexibility.
Abstract: The neurovisceral integration model proposes that heart rate variability (HRV) is linked to prefrontal cortex activity via the vagus nerve, which connects the heart and the brain. HRV, an index of cardiac vagal tone, has been found to predict performance on several cognitive control tasks that rely on the prefrontal cortex. However, the link between HRV and the core cognitive control function “shifting” between tasks and mental sets is under-investigated. Therefore, the present study tested the neurovisceral integration model by examining, in 90 participants, the relationship between vagally mediated resting-state HRV and performance in a task-switching paradigm that provides a relatively process-pure measure of cognitive flexibility. As predicted, participants with higher resting-state HRV (indexed both by time domain and frequency domain measures) showed smaller switch costs (i.e., greater flexibility) than individuals with lower resting-state HRV. Our findings support the neurovisceral integration model and indicate that higher levels of vagally mediated resting-state HRV promote cognitive flexibility.

63 citations


Journal ArticleDOI
TL;DR: Initial evidence is provided that insular morphology can be associated with potential social media addiction, in part, through its contribution to poor foresight and impulsivity as captured by delay discounting.
Abstract: Addiction-like symptoms in relation to excessive and compulsive social media use are common in the general population. Because they can lead to various adverse effects, there is a growing need to understand the brain systems and processes that are involved in potential social media addiction. We focus on the morphology of the posterior subdivision of the insular cortex (i.e., the insula), because it has been shown to be instrumental to supporting the maintenance of substance addictions and problematic behaviors. Assuming that social media addiction shares neural similarities with more established ones and consistent with evidence from the neuroeconomics domain, we further examine one possible reason for this association-namely that insular morphology influences one's delay discounting and that this delay discounting contributes to exaggerated preference for immediate social media rewards and consequent addiction-like symptoms. Based on voxel-based morphometry techniques applied to MRI scans of 32 social media users, we show that the gray matter volumes of the bilateral posterior insula are negatively associated with social media addiction symptoms. We further show that this association is mediated by delay discounting. This provides initial evidence that insular morphology can be associated with potential social media addiction, in part, through its contribution to poor foresight and impulsivity as captured by delay discounting.

57 citations


Journal ArticleDOI
TL;DR: Psychophysiological interaction analyses show that high levels of intrinsic reward associated with a balance between task difficulty and individual ability are associated with increased functional connectivity between key structures within cognitive control and reward networks.
Abstract: Cognitive control is a framework for understanding the neuropsychological processes that underlie the successful completion of everyday tasks. Only recently has research in this area investigated motivational contributions to control allocation. An important gap in our understanding is the way in which intrinsic rewards associated with a task motivate the sustained allocation of control. To address this issue, we draw on flow theory, which predicts that a balance between task difficulty and individual ability results in the highest levels of intrinsic reward. In three behavioral and one functional magnetic resonance imaging studies, we used a naturalistic and open-source video game stimulus to show that changes in the balance between task difficulty and an individual's ability to perform the task resulted in different levels of intrinsic reward, which is associated with different brain states. Specifically, psychophysiological interaction analyses show that high levels of intrinsic reward associated with a balance between task difficulty and individual ability are associated with increased functional connectivity between key structures within cognitive control and reward networks. By comparison, a mismatch between task difficulty and individual ability is associated with lower levels of intrinsic reward and corresponds to increased activity within the default mode network. These results suggest that intrinsic reward motivates cognitive control allocation.

54 citations


Journal ArticleDOI
TL;DR: Analysis of the neural correlates of prosocial and selfish behavior in interactions with real-life friends and disliked peers in young adults provided insights into the modulation of neural processes that underlie prosocial behavior as a function of a positive or negative relationship with the interaction partner.
Abstract: Although the majority of our social interactions are with people we know, few studies have investigated the neural correlates of sharing valuable resources with familiar others. Using an ecologically valid research paradigm, this functional magnetic resonance imaging study examined the neural correlates of prosocial and selfish behavior in interactions with real-life friends and disliked peers in young adults. Participants (N = 27) distributed coins between themselves and another person, where they could make selfish choices that maximized their own gains or prosocial choices that maximized outcomes of the other. Participants were more prosocial toward friends and more selfish toward disliked peers. Individual prosociality levels toward friends were associated negatively with supplementary motor area and anterior insula activity. Further preliminary analyses showed that prosocial decisions involving friends were associated with heightened activity in the bilateral posterior temporoparietal junction, and selfish decisions involving disliked peers were associated with heightened superior temporal sulcus activity, which are brain regions consistently shown to be involved in mentalizing and perspective taking in prior studies. Further, activation of the putamen was observed during prosocial choices involving friends and selfish choices involving disliked peers. These findings provide insights into the modulation of neural processes that underlie prosocial behavior as a function of a positive or negative relationship with the interaction partner.

52 citations


Journal ArticleDOI
TL;DR: Significant links between the propensity to adopt different coping styles and the functional connectivity profiles of regions belonging to the default mode (DMN) and anterior salience (AS) networks are identified—namely, the anterior cingulate cortex, left frontopolar cortex, and left angular gyrus.
Abstract: Coping abilities represent the individual set of mental and behavioral strategies adopted when facing stress or traumatic experiences. Coping styles related to avoidance have been linked to a disposition to develop psychiatric disorders such as PTSD, anxiety, and major depression, whereas problem-oriented coping skills have been positively correlated with well-being and high quality of life. Even though coping styles constitute an important determinant of resilience and can impact many aspects of everyday living, no study has investigated their brain functional connectivity underpinnings in humans. Here we analyzed both psychometric scores of coping and resting-state fMRI data from 102 healthy adult participants. Controlling for personality and problem-solving abilities, we identified significant links between the propensity to adopt different coping styles and the functional connectivity profiles of regions belonging to the default mode (DMN) and anterior salience (AS) networks—namely, the anterior cingulate cortex, left frontopolar cortex, and left angular gyrus. Also, a reduced negative correlation between AS and DMN nodes explained variability in one specific coping style, related to avoiding problems while focusing on the emotional component of the stressor at hand, instead of relying on cognitive resources. These results might be integrated with current neurophysiological models of resilience and individual responses to stress, in order to understand the propensity to develop clinical conditions (e.g., PTSD) and predict the outcomes of psychotherapeutic interventions.

45 citations


Journal ArticleDOI
TL;DR: The study yielded three main findings: behaviorally, the intensity of agreement ratings was linked to greater subjective emotional arousal as well as enhanced high-confidence subsequent memory, andurally, statements that elicited strong (vs. weak) agreement or disagreement were associated with greater activation of the amygdala.
Abstract: Many fMRI studies have examined the neural mechanisms supporting emotional memory for stimuli that generate emotion rather automatically (e.g., a picture of a dangerous animal or of appetizing food). However, far fewer studies have examined how memory is influenced by emotion related to social and political issues (e.g., a proposal for large changes in taxation policy), which clearly vary across individuals. In order to investigate the neural substrates of affective and mnemonic processes associated with personal opinions, we employed an fMRI task wherein participants rated the intensity of agreement/disagreement to sociopolitical belief statements paired with neural face pictures. Following the rating phase, participants performed an associative recognition test in which they distinguished identical versus recombined face-statement pairs. The study yielded three main findings: behaviorally, the intensity of agreement ratings was linked to greater subjective emotional arousal as well as enhanced high-confidence subsequent memory. Neurally, statements that elicited strong (vs. weak) agreement or disagreement were associated with greater activation of the amygdala. Finally, a subsequent memory analysis showed that the behavioral memory advantage for statements generating stronger ratings was dependent on the medial prefrontal cortex (mPFC). Together, these results both underscore consistencies in neural systems supporting emotional arousal and suggest a modulation of arousal-related encoding mechanisms when emotion is contingent on referencing personal beliefs.

42 citations


Journal ArticleDOI
TL;DR: A lateralized role of left and right DLPFC activity in enhancing/worsening the top-down regulation of emotional attention processing is supported, which supports the rationale of new therapies for affective disorders aimed to increase the activation of the left over the right D LPFC in combination with attentional control training.
Abstract: Background Attention to relevant emotional information in the environment is an important process related to vulnerability and resilience for mood and anxiety disorders. In the present study, the effects of left and right dorsolateral prefrontal cortex (i.e., DLPFC) stimulation on attentional mechanisms of emotional processing were tested and contrasted.

Journal ArticleDOI
TL;DR: The findings are interpreted to suggest that delta- beta AAC is a plausible neurobiological index of adaptive stress regulation and can distinguish between trait high and low social anxiety during stress, while delta-beta PAC might be sensitive enough to reflect mild state anxiety in LSA participants.
Abstract: Cross-frequency coupling (CFC) between frontal delta (1-4 Hz) and beta (14-30 Hz) oscillations has been suggested as a candidate neural correlate of social anxiety disorder, a disorder characterized by fear and avoidance of social and performance situations. Prior studies have used amplitude-amplitude correlation (AAC) as a CFC measure and hypothesized it as a candidate neural mechanism of affective control. However, using this metric has yielded inconsistent results regarding the direction of CFC, and the functional significance of coupling strength is uncertain. To offer a better understanding of CFC in social anxiety, we compared frontal delta-beta AAC with phase-amplitude coupling (PAC) - a mechanism for information transfer through neural circuits. Twenty high socially anxious (HSA) and 32 low socially anxious (LSA) female undergraduates participated in a social performance task (SPT). Delta-beta PAC and AAC were estimated during the resting state, as well as the anticipation and recovery conditions. Results showed significantly more AAC in LSA than HSA participants during early anticipation, as well as significant values during all conditions in LSA participants only. PAC did not distinguish between LSA and HSA participants, and instead was found to correlate with state nervousness during early anticipation, but in LSA participants only. Together, these findings are interpreted to suggest that delta-beta AAC is a plausible neurobiological index of adaptive stress regulation and can distinguish between trait high and low social anxiety during stress, while delta-beta PAC might be sensitive enough to reflect mild state anxiety in LSA participants.

Journal ArticleDOI
TL;DR: The present review confirms the relevance of eye-movement measurements in relation to researching emotion and suggests a neurobiological model that considers possible mechanisms by which emotional stimuli could affect oculomotor behavior.
Abstract: In the past decade, more and more research has been investigating oculomotor behavior in relation to attentional selection of emotional stimuli. Whereas previous research on covert emotional attention demonstrates contradictory results, research on overt attention clearly shows the influence of emotional stimuli on attentional selection. The current review highlights studies that have used eye-movement behavior as the primary outcome measure in healthy populations and focusses on the evidence that emotional stimuli-in particular, threatening stimuli-affect temporal and spatial dynamics of oculomotor programming. The most prominent results from these studies indicate that attentional selection of threatening stimuli is under bottom-up control. Moreover, threatening stimuli seem to have the greatest impact on oculomotor behavior through biased processing via the magnocellular pathway. This is consistent with an evolutionary account of threat processing, which claims a pivotal role for a subcortical network including pulvinar, superior colliculus, and amygdala. Additionally, I suggest a neurobiological model that considers possible mechanisms by which emotional stimuli could affect oculomotor behavior. The present review confirms the relevance of eye-movement measurements in relation to researching emotion in order to elucidate processes involved in emotional modulation of visual and attentional selection.

Journal ArticleDOI
TL;DR: The results of the current study add to the understanding of the neural underpinnings of different forms of self-related cognition—brooding and reflective rumination—in healthy and depressed women.
Abstract: Ruminative thinking is related to an increased risk for major depressive disorder (MDD) and perpetuates negative mood states. Rumination, uncontrollable negative thoughts about the self, may comprise both reflective and brooding components. However, only brooding rumination is consistently associated with increased negativity bias and negative coping styles, while reflective rumination has a less clear relationship with negative outcomes in healthy and depressed participants. The current study examined seed-to-voxel (S2.V) resting-state functional connectivity (FC) in a sample of healthy (HC) and depressed (MDD) adult women (HC: n=50, MDD: n=33). The S2V FC of six key brain regions, including the left and right amygdala, anterior and posterior cingulate cortex (ACC, PCC), and medial and dorsolateral prefrontal cortices (mPFC, dlPFC), was correlated with self-reported reflective and brooding rumination. Results indicate that HC and MDD participants had increased brooding rumination associated with decreased FC between the left amygdala and the right temporal pole. Moreover, reflective rumination was associated with distinct FC of the mPFC, PCC, and ACC with parietal, occipital, and cingulate regions. Depressed participants, compared with HC, exhibited decreased FC between the PCC and a region in the right middle frontal gyrus. The results of the current study add to the understanding of the neural underpinnings of different forms of self-related cognition-brooding and reflective rumination-in healthy and depressed women.

Journal ArticleDOI
TL;DR: The most novel finding was that the right temporoparietal junction and middle temporal gyrus showed sensitivity to discourse processing period only during social discourse comprehension, indicating that they selectively contribute to domain-specific semantic integration.
Abstract: Neuroimaging studies have found that theory of mind (ToM) and discourse comprehension involve similar brain regions. These brain regions may be associated with three cognitive components that are necessarily or frequently involved in ToM and discourse comprehension, including social concept representation and retrieval, domain-general semantic integration, and domain-specific integration of social semantic contents. Using fMRI, we investigated the neural correlates of these three cognitive components by exploring how discourse topic (social/nonsocial) and discourse processing period (ending/beginning) modulate brain activation in a discourse comprehension (and also ToM) task. Different sets of brain areas showed sensitivity to discourse topic, discourse processing period, and the interaction between them, respectively. The most novel finding was that the right temporoparietal junction and middle temporal gyrus showed sensitivity to discourse processing period only during social discourse comprehension, indicating that they selectively contribute to domain-specific semantic integration. Our finding indicates how different domains of semantic information are processed and integrated in the brain and provides new insights into the neural correlates of ToM and discourse comprehension.

Journal ArticleDOI
TL;DR: In this paper, the authors used a modified version of the Balloon Analogue Risk Task (BART), where participants made multiple rounds of decisions between a risky option (pump up the balloon) and a safe option (cash out).
Abstract: Event-related potential (ERP) has the potential to reveal the temporal neurophysiological dynamics of risk decision-making, but this potential has not been fully explored in previous studies. When predicting risk decision with ERPs, most studies focus on between-trial analysis that reflects feedback learning, while within-trial analysis that could directly link option assessment with behavioral output has been largely ignored. Suitable task design is crucial for applying within-trial prediction. In this study, we used a modified version of the classic Balloon Analogue Risk Task (BART). In each trial of the task, participants made multiple rounds of decisions between a risky option (pump up the balloon) and a safe option (cash out). Behavioral results show that as the level of economic risk increased, participants were less willing to make a risky decision and also needed a longer response time to do so. In general, the ERP results showed distinct characteristics compared with previous findings based on between-trial prediction, particularly about the role of the P1 component. Specifically, both the P1 (amplitude and latency) and P3 (amplitude) components evoked by current outcomes predicted subsequent decisions. We suggest that these findings indicate the importance of selective attention (indexed by the P1) and motivational functions (indexed by the P3), which may help clarify the cognitive mechanism of risk decision-making. The theoretical significance of these findings is discussed.

Journal ArticleDOI
TL;DR: The study suggests that flow feelings are highly connected to the mobilization of attentional resources, and all the more in a condition that promotes individuals’ choice and autonomy.
Abstract: The present study attempts to better identify the neurophysiological changes occurring during flow experience and how this can be related to the mobilization of attentional resources. Self-reports of flow (using a flow feelings scale) and attention (using thought probes), autonomic activity (heart rate, heart rate variability, and breathing rate), and cerebral oxygenation (using near-infrared spectroscopy) in two regions of the frontoparietal attention network (right lateral frontal cortex and right inferior parietal lobe) were measured during the practice of two simple video games (Tetris and Pong) played at different difficulty conditions (easy, optimal, hard, or self-selected). Our results indicated that an optimal level of difficulty, compared with an easy or hard level of difficulty led to greater flow feelings and a higher concentration of oxygenated hemoglobin in the regions of the frontoparietal network. The self-selected, named autonomy condition did not lead to more flow feelings than the optimal condition; however, the autonomy condition led to greater sympathetic activity (reduced heart rate variability and greater breathing rate) and higher activation of the frontoparietal regions. Our study suggests that flow feelings are highly connected to the mobilization of attentional resources, and all the more in a condition that promotes individuals' choice and autonomy.

Journal ArticleDOI
TL;DR: A systems biology approach is recommended for further research into the pathophysiological networks underlying MDD and linking depression and obesity.
Abstract: Major depressive disorder (MDD) and obesity are dominant and inter-related health burdens. Obesity is a risk factor for MDD, and there is evidence MDD increases risk of obesity. However, description of a bidirectional relationship between obesity and MDD is misleading, as closer examination reveals distinct unidirectional relationships in MDD subtypes. MDD is frequently associated with weight loss, although obesity promotes MDD. In contrast, MDD with atypical features (MDD-AF) is characterised by subsequent weight gain and obesity. The bases of these distinct associations remain to be detailed, with conflicting findings clouding interpretation. These associations can be viewed within a systems biology framework—the psycho-immune neuroendocrine (PINE) network shared between MDD and metabolic disorders. Shared PINE subsystem perturbations may underlie increased MDD in overweight and obese people (obesity-associated depression), while obesity in MDD-AF (depression-associated obesity) involves more complex interactions between behavioural and biomolecular changes. In the former, the chronic PINE dysfunction triggering MDD is augmented by obesity-dependent dysregulation in shared networks, including inflammatory, leptin-ghrelin, neuroendocrine, and gut microbiome systems, influenced by chronic image-associated psychological stress (particularly in younger or female patients). In MDD-AF, behavioural dysregulation, including hypersensitivity to interpersonal rejection, fundamentally underpins energy imbalance (involving hyperphagia, lethargy, hypersomnia), with evolving obesity exaggerating these drivers via positive feedback (and potentially augmenting PINE disruption). In both settings, sex and age are important determinants of outcome, associated with differences in emotional versus cognitive dysregulation. A systems biology approach is recommended for further research into the pathophysiological networks underlying MDD and linking depression and obesity.

Journal ArticleDOI
TL;DR: The results indicate that adolescent boys show a reduced neural responsivity in the prospect of social punishment and imply that, once the incentive is obtained, adolescent boys attribute a relatively enhanced motivational significance to monetary incentives and show a relative hyposensitivity to punishment.
Abstract: The brain's reward system undergoes major changes during adolescence, and an increased reactivity to social and nonsocial incentives has been described as a typical feature during this transitional period. Little is known whether there are sex differences in the brain's responsiveness to social or monetary incentives during adolescence. The aim of this event-related potential (ERP) study was to compare the neurophysiological underpinnings of monetary and social incentive processing in adolescent boys versus girls. During ERP recording, 38 adolescents (21 females, 17 males; 13-18 years) completed an incentive delay task comprising (a) a reward versus punishment condition and (b) social versus monetary incentives. The stimulus-preceding negativity (SPN) was recorded during anticipation of reward and punishment, and the feedback P3 (fP3) along with the feedback-related negativity (FRN) after reward/punishment delivery. During anticipation of social punishment, adolescent boys compared with girls exhibited a reduced SPN. After delivery, male adolescents exhibited higher fP3 amplitudes to monetary compared with social incentives, whereas fP3 amplitudes in girls were comparable across incentive types. Moreover, whereas in boys fP3 responses were higher in rewards than in punishment trials, no such difference was evident in girls. The results indicate that adolescent boys show a reduced neural responsivity in the prospect of social punishment. Moreover, the findings imply that, once the incentive is obtained, adolescent boys attribute a relatively enhanced motivational significance to monetary incentives and show a relative hyposensitivity to punishment. The findings might contribute to our understanding of sex-specific vulnerabilities to problem behaviors related to incentive processing during adolescence.

Journal ArticleDOI
TL;DR: Bayesian analyses revealed very strong evidence for the presence of VAN for both Gabor sizes, however, there was no evidence for or against an effect of stimulus size.
Abstract: Electrophysiological recordings are commonly used to study the neural correlates of consciousness in humans. Previous research is inconsistent as to whether awareness can be indexed with visual awareness negativity (VAN) at about 200 ms or if it occurs later. The present study was preregistered with two main aims: First, to provide independent evidence for or against the presence of VAN, and second, to study whether stimulus size may account for the inconsistent findings. Subjects were shown low-contrast Gaussian filtered gratings (Gabor patches) in the four visual quadrants. Gabor size (large and small) was varied in different sessions and calibrated to each subject’s threshold of visual awareness. Event-related potentials were derived from trials in which subjects localized the Gabors correctly to capture the difference between trials in which they reported awareness versus no awareness. Bayesian analyses revealed very strong evidence for the presence of VAN for both Gabor sizes. However, there was no evidence for or against an effect of stimulus size. The present findings provide evidence for VAN as an early neural correlate of awareness.

Journal ArticleDOI
TL;DR: Activity within ventromedial prefrontal cortex (vmPFC) was related to both mind ratings inside the scanner and gaze-cueing performance outside the scanner, suggesting a role of vmPFC in the top-down modulation of low-level social-cognitive processes.
Abstract: In social interactions, we rely on nonverbal cues like gaze direction to understand the behavior of others. How we react to these cues is affected by whether they are believed to originate from an entity with a mind, capable of having internal states (i.e., mind perception). While prior work has established a set of neural regions linked to social-cognitive processes like mind perception, the degree to which activation within this network relates to performance in subsequent social-cognitive tasks remains unclear. In the current study, participants performed a mind perception task (i.e., judging the likelihood that faces, varying in physical human-likeness, have internal states) while event-related fMRI was collected. Afterwards, participants performed a social attention task outside the scanner, during which they were cued by the gaze of the same faces that they previously judged within the mind perception task. Parametric analyses of the fMRI data revealed that activity within ventromedial prefrontal cortex (vmPFC) was related to both mind ratings inside the scanner and gaze-cueing performance outside the scanner. In addition, other social brain regions were related to gaze-cueing performance, including frontal areas like the left insula, dorsolateral prefrontal cortex, and inferior frontal gyrus, as well as temporal areas like the left temporo-parietal junction and bilateral temporal gyri. The findings suggest that functions subserved by the vmPFC are relevant to both mind perception and social attention, implicating a role of vmPFC in the top-down modulation of low-level social-cognitive processes.

Journal ArticleDOI
TL;DR: It is speculated that subliminal rewards activate the striatal DA system, enhancing the kinds of automatic integrative processes that lead to more creative strategies for problem solving, without increasing the selectivity of attention, which could impede insight.
Abstract: Creative problem solving involves search processes, and it is known to be hard to motivate. Reward cues have been found to enhance performance across a range of tasks, even when cues are presented subliminally, without being consciously detected. It is uncertain whether motivational processes, such as reward, can influence problem solving. We tested the effect of supraliminal and subliminal reward on participant performance on problem solving that can be solved by deliberate analysis or by insight. Forty-one participants attempted to solve 100 compound remote associate problems. At the beginning of each problem, a potential reward cue (1 or 25 cents) was displayed, either subliminally (17 ms) or supraliminally (100 ms). Participants earned the displayed reward if they solved the problem correctly. Results showed that the higher subliminal reward increased the percentage of problems solved correctly overall. Second, we explored if subliminal rewards preferentially influenced solutions that were achieved via a sudden insight (mostly processed below awareness) or via a deliberate analysis. Participants solved more problems via insight following high subliminal reward when compared with low subliminal reward, and compared with high supraliminal reward, with no corresponding effect on analytic solving. Striatal dopamine (DA) is thought to influence motivation, reinforce behavior, and facilitate cognition. We speculate that subliminal rewards activate the striatal DA system, enhancing the kinds of automatic integrative processes that lead to more creative strategies for problem solving, without increasing the selectivity of attention, which could impede insight.

Journal ArticleDOI
TL;DR: The results suggest that individual variations in responses to infant stimuli are associated with individual differences in parental care system activation and parenting quality.
Abstract: Certain infant facial characteristics, referred to as baby schema, are thought to automatically trigger parenting behavior and affective orientation toward infants. Electroencephalography (EEG) is well suited to assessing the intuitive nature and temporal dynamics of parenting responses, due to its millisecond temporal resolution. Little is known, however, about the relations between neural processing of infant cues and actual parenting behavior in a naturalistic setting. In the present study we examined the event-related potentials (ERPs) of mothers (N = 33) watching infant faces of varying attractiveness, in relation to activation of the maternal care system and the mothers' observed parenting behavior (sensitivity, nonintrusiveness) with their own child (2-6 years old). The results revealed that, irrespective of the cuteness of the infant face, mothers' neural processing of infant faces involved both early P1 and P2 components (related to orienting/detecting processes) and late positive potentials (LPPs; related to more controlled cognitive evaluation/attentional engagement). Increased early detection and processing of infant faces (reflected by P1 and P2 activity) was related to increased activation of the parental care system. In later stages of face processing, increased attentional engagement with infant faces (as reflected by LPP activity) was associated with more intrusiveness of a mother with her own child during interaction. These findings suggest that individual variations in responses to infant stimuli are associated with individual differences in parental care system activation and parenting quality. Furthermore, the parental care system might be activated relatively automatically, but actual parenting and caregiving behavior requires more conscious control.

Journal ArticleDOI
TL;DR: Testing whether arousing, aversive sounds can influence inhibitory task performance and lead to increased error monitoring relative to a neutral task condition suggests that, in general, error processing is stronger if the erroneous response directly follows the stimulus.
Abstract: The first aim of the present study was to test whether arousing, aversive sounds can influence inhibitory task performance and lead to increased error monitoring relative to a neutral task condition. The second aim was to examine whether the enhancement of error monitoring in an affective context (if present) could be predicted from stop-signal-related brain activity. Participants performed an emotional stop-signal task that required response inhibition to aversive and neutral auditory stimuli. The behavioral data revealed that unpleasant sounds facilitated inhibitory processing by decreasing the stop-signal reaction time and increasing the inhibitory rate relative to neutral tones. Aversive sounds evoked larger N1, P3, and Pe components, indicating improvements in perceptual processing, inhibition, and conscious error monitoring. A first regression analysis, conducted regardless of the category of the stop signal, revealed that both selected indexes of stop-signal-related brain activity-the N1 and P3 amplitudes recorded in the unsuccessfully inhibited trials-significantly accounted for the Pe component variance, explaining a large amount of the observed variation (66%). A second regression model, focused on difference measures (emotional minus neutral), revealed that the affective increase in the P3 amplitude on failed stop trials was the only factor that significantly accounted for the emotional enhancement effect in the Pe amplitude. This suggests that, in general (regardless of stop-signal condition), error processing is stronger if the erroneous response directly follows the stimulus, which was effectively processed on both the perceptual and action-monitoring levels. However, only inhibition-monitoring evidence accounts for the emotional increase in conscious error detection.

Journal ArticleDOI
TL;DR: Functional neuroimaging findings extend the evidence that the presence of peers biases adolescents towards risk taking by increasing reward sensitivity rather than disrupting cognitive control.
Abstract: Most adolescent risk taking occurs in the presence of peers. Prior research suggests that peers alter adolescents' decision making by increasing reward sensitivity and the engagement of regions involved in the processing of rewards, primarily the striatum. However, the potential influence of peers on the capacity for impulse control, and the associated recruitment of the brain's control circuitry, has not yet been adequately examined. In the current study, adolescents underwent functional neuroimaging while they completed interleaved rounds of risk-taking and response-inhibition tasks. Social context was manipulated such that the participants believed they were either playing alone and unobserved, or watched by an anonymous peer. Compared to those who completed the tasks alone, adolescents in the peer condition took more risks during the risk-taking task and exhibited relatively heightened activation of the striatum. Activity within this striatal region also predicted individual differences in overall risk taking. In contrast, the presence of peers had no effect on behavioral response inhibition and had minimal impact on the engagement of typical cognitive control regions. In a subregion of the anterior insula engaged mutually by both tasks, activity was again found to be sensitive to social context during the risk-taking task, but not during the response-inhibition task. These findings extend the evidence that the presence of peers biases adolescents towards risk taking by increasing reward sensitivity rather than disrupting cognitive control.

Journal ArticleDOI
TL;DR: Attention appears to be sensitive to variations in uncertainty, whereas anticipation seems sensitive to uncertainty globally, the two processes appear to be distinctly related to anxiety risk factors.
Abstract: Individual differences in responding to uncertainty have been proposed as a key mechanism of how anxiety disorders develop and are maintained. However, most empirical work has compared responding to uncertain versus certain threat dichotomously. This is a significant limitation because uncertainty in daily life occurs along a continuum of probability, ranging from very low to high chances of negative outcomes. The current study investigated (1) how varying levels of uncertainty impact attention and anticipatory emotion, and (2) how these effects are moderated by individual differences in risk factors for anxiety disorders, particularly intolerance of uncertainty (IU) and worry. Participants (n = 65) completed a card task in which the probability of shock varied across trials. Two event-related potential components were examined: the P2, an index of attention, and the stimulus-preceding negativity (SPN), an index of anticipation. The P2 tracked the level of uncertainty and was smaller for more uncertain outcomes. Participants higher in IU exhibited greater differences in the P2 across levels of uncertainty. The SPN did not track specific levels of uncertainty but was largest for uncertain threat compared with certain threat and safety. Greater worry was associated with blunting of the SPN in anticipation of all outcomes. Thus, attention appears to be sensitive to variations in uncertainty, whereas anticipation seems sensitive to uncertainty globally. The two processes appear to be distinctly related to anxiety risk factors. These results highlight the value of examining multiple aspects of anticipatory responding to varying levels of uncertainty for understanding risk for anxiety disorders.

Journal ArticleDOI
TL;DR: The findings demonstrate the importance of neural response to social reward in key social processing regions for everyday experiences of emotional closeness and positive affect in the context of social interactions.
Abstract: Feeling emotionally close to others during social interactions is a ubiquitous and meaningful experience that can elicit positive affect. The present study integrates functional magnetic resonance imaging (fMRI) and ecological momentary assessment (EMA) to investigate whether neural response to social reward (1) is related to the experience of emotional closeness and (2) moderates the association between emotional closeness and positive affect during and following social interactions. In this study, 34 typically developing adolescents (ages 14-18 years) completed a social-reward fMRI task, a monetary-reward fMRI task, and a 2-week EMA protocol regarding their social and affective experiences. Adolescents with greater right posterior superior temporal sulcus/temporoparietal junction (pSTS/TPJ) response to social reward reported greater mean momentary emotional closeness. Neural response to social reward in the right pSTS/TPJ moderated how strongly momentary emotional closeness was associated with both concurrent positive affect and future peak happiness, but in different ways. Although emotional closeness had a significant positive association with concurrent positive affect among adolescents at both high and low right pSTS/TPJ response based on a follow-up simple slopes test, this association was stronger for adolescents with low right pSTS/TPJ response. In contrast, emotional closeness had a significant positive association with future peak happiness among adolescents with high right pSTS/TPJ response, but not among those with low right pSTS/TPJ response. These findings demonstrate the importance of neural response to social reward in key social processing regions for everyday experiences of emotional closeness and positive affect in the context of social interactions.

Journal ArticleDOI
TL;DR: OA and YA neural sensitivity to face trustworthiness in reward circuit regions revealed effects exclusive to OA in the amygdala and caudate, and an effect that was not moderated by age in the dorsal anterior cingulate cortex.
Abstract: We examined older adult (OA) and younger adult (YA) neural sensitivity to face trustworthiness in reward circuit regions, previously found to respond to trustworthiness in YA. Interactions of face trustworthiness with age revealed effects exclusive to OA in the amygdala and caudate, and an effect that was not moderated by age in the dorsal anterior cingulate cortex (dACC). OA, but not YA, showed a nonlinear amygdala response to face trustworthiness, with significantly stronger activation response to high than to medium trustworthy faces, and no difference between low and medium or high. This may explain why an earlier study investigating OA amygdala activation to trustworthiness failed to find a significant effect, since only the linear low versus high trustworthiness difference was assessed. OA, but not YA, also showed significantly stronger activation to high than to low trustworthy faces in the right caudate, indicating a positive linear effect, consistent with previous YA research, as well as significantly stronger activation to high than to medium but not low trustworthy faces in the left caudate, indicating a nonlinear effect. Activation in dACC across both age groups showed a positive linear effect consistent with previous YA research. Finally, OA rated the faces as more trustworthy than did YA across all levels of trustworthiness. Future research should examine whether the null effects for YA were due to our inclusion of older faces. Research also should investigate possible implications of our findings for more ecologically valid OA responses to people who vary in facial trustworthiness.

Journal ArticleDOI
TL;DR: Results showed greater interference from distractors under cabergoline, particularly for individuals with higher baseline dopamine (indicated by WM span), which support computational theories of striatal D1–D2 function during WM encoding and distractor-filtering and provide new evidence for interactive cortico-striatal systems that support VSWM capacity and their dependence on WM span.
Abstract: The interplay of dopaminergic striatal D1–D2 circuits is thought to support working memory (WM) by selectively filtering information that is to be remembered versus information to be ignored. To test this theory, we conducted an experiment in which healthy participants performed a visuospatial working memory (VSWM) task after ingesting the D2-receptor agonist cabergoline (or placebo), in a randomized, double-blinded, crossover design. Results showed greater interference from distractors under cabergoline, particularly for individuals with higher baseline dopamine (indicated by WM span). These findings support computational theories of striatal D1–D2 function during WM encoding and distractor-filtering, and provide new evidence for interactive cortico-striatal systems that support VSWM capacity and their dependence on WM span.

Journal ArticleDOI
TL;DR: Applying TMS to the rDLPFC may inhibit neural activity and increase alcohol consumption, and the relationship between stimulation and consumption did not appear to be mediated by inhibitory control in the present study.
Abstract: Previous research indicates that alcohol intoxication impairs inhibitory control and that the right dorsolateral prefrontal cortex (rDLPFC) is a functional brain region important for exercising control over thoughts and behaviour. At the same time, the extent to which changes in inhibitory control following initial intoxication mediate subsequent drinking behaviours has not been elucidated fully. Ascertaining the extent to which inhibitory control impairments drive alcohol consumption, we applied continuous theta burst transcranial magnetic stimulation (rDLPFC cTBS vs. control) to isolate how inhibitory control impairments (measured using the Stop-Signal task) shape ad libitum alcohol consumption in a pseudo taste test. Twenty participants (13 males) took part in a within-participants design; their age ranged between 18 and 27 years (M = 20.95, SD = 2.74). Results indicate that following rDLPFC cTBS participants’ inhibitory control was impaired, and ad libitum consumption increased. The relationship between stimulation and consumption did not appear to be mediated by inhibitory control in the present study. Overall, findings suggest that applying TMS to the rDLPFC may inhibit neural activity and increase alcohol consumption. Future research with greater power is recommended to determine the extent to which inhibitory control is the primary mechanism by which the rDLPFC exerts influence over alcohol consumption, and the degree to which other cognitive processes may play a role.