scispace - formally typeset
Search or ask a question

Showing papers in "Computer Methods in Biomechanics and Biomedical Engineering in 2014"


Journal ArticleDOI
TL;DR: The aim of this paper is to be an introduction to the field, provide knowledge on the work that has been developed and to be a suitable reference for those who are looking for registration methods for a specific application.
Abstract: This paper presents a review of automated image registration methodologies that have been used in the medical field The aim of this paper is to be an introduction to the field, provide knowledge on the work that has been developed and to be a suitable reference for those who are looking for registration methods for a specific application The registration methodologies under review are classified into intensity or feature based The main steps of these methodologies, the common geometric transformations, the similarity measures and accuracy assessment techniques are introduced and described

689 citations


Journal ArticleDOI
TL;DR: It is shown that Poisson interpolation generates smoothly varying vector fields that satisfy a set of user-defined constraints in arbitrary domains, and is anticipated to be immediately transformative to experimental and clinical settings, in which it will allow us to quickly and reliably create smooth interpolations of arbitrary fields from data-sets.
Abstract: Smoothly varying muscle fibre orientations in the heart are critical to its electrical and mechanical function. From detailed histological studies and diffusion tensor imaging, we now know that fibre orientations in humans vary gradually from approximately − 70° in the outer wall to +80° in the inner wall. However, the creation of fibre orientation maps for computational analyses remains one of the most challenging problems in cardiac electrophysiology and cardiac mechanics. Here, we show that Poisson interpolation generates smoothly varying vector fields that satisfy a set of user-defined constraints in arbitrary domains. Specifically, we enforce the Poisson interpolation in the weak sense using a standard linear finite element algorithm for scalar-valued second-order boundary value problems and introduce the feature to be interpolated as a global unknown. User-defined constraints are then simply enforced in the strong sense as Dirichlet boundary conditions. We demonstrate that the proposed concept is ca...

114 citations


Journal ArticleDOI
TL;DR: This study investigates a balloon-expandable valve and proposes a novel simulation strategy to reproduce its implantation using computational tools, which enabled the entire prosthetic device virtually implanted in a patient-specific aortic root created by processing medical images.
Abstract: Until recently, heart valve failure has been treated adopting open-heart surgical techniques and cardiopulmonary bypass. However, over the last decade, minimally invasive procedures have been developed to avoid high risks associated with conventional open-chest valve replacement techniques. Such a recent and innovative procedure represents an optimal field for conducting investigations through virtual computer-based simulations: in fact, nowadays, computational engineering is widely used to unravel many problems in the biomedical field of cardiovascular mechanics and specifically, minimally invasive procedures. In this study, we investigate a balloon-expandable valve and we propose a novel simulation strategy to reproduce its implantation using computational tools. Focusing on the Edwards SAPIEN valve in particular, we simulate both stent crimping and deployment through balloon inflation. The developed procedure enabled us to obtain the entire prosthetic device virtually implanted in a patient-specific ao...

91 citations


Journal ArticleDOI
TL;DR: The knee model can accurately predict normalised intra-articular pressure and forces for different loading conditions and could be further developed for subject-specific surgical planning.
Abstract: A three-dimensional (3D) knee joint computational model was developed and validated to predict knee joint contact forces and pressures for different degrees of malalignment. A 3D computational knee model was created from high-resolution radiological images to emulate passive sagittal rotation (full-extension to 65°-flexion) and weight acceptance. A cadaveric knee mounted on a six-degree-of-freedom robot was subjected to matching boundary and loading conditions. A ligament-tuning process minimised kinematic differences between the robotically loaded cadaver specimen and the finite element (FE) model. The model was validated by measured intra-articular force and pressure measurements. Percent full scale error between FE-predicted and in vitro-measured values in the medial and lateral compartments were 6.67% and 5.94%, respectively, for normalised peak pressure values, and 7.56% and 4.48%, respectively, for normalised force values. The knee model can accurately predict normalised intra-articular pressure and...

84 citations


Journal ArticleDOI
TL;DR: 3D finite element models of the deltoid and rotator cuff muscles are developed and shown that the anterior fibres provide substantial internal rotation while the posterior fibres act as external rotators of supraspinatus.
Abstract: Accurate representation of musculoskeletal geometry is needed to characterise the function of shoulder muscles. Previous models of shoulder muscles have represented muscle geometry as a collection of line segments, making it difficult to account for the large attachment areas, muscle–muscle interactions and complex muscle fibre trajectories typical of shoulder muscles. To better represent shoulder muscle geometry, we developed 3D finite element models of the deltoid and rotator cuff muscles and used the models to examine muscle function. Muscle fibre paths within the muscles were approximated, and moment arms were calculated for two motions: thoracohumeral abduction and internal/external rotation. We found that muscle fibre moment arms varied substantially across each muscle. For example, supraspinatus is considered a weak external rotator, but the 3D model of supraspinatus showed that the anterior fibres provide substantial internal rotation while the posterior fibres act as external rotators. Including ...

80 citations


Journal ArticleDOI
TL;DR: Pressure in the case of fractional models (fractional Oldroyd-B model and fractional Maxwell model) of viscoelastic fluids is considerably more substantial than that in the corresponding classical visCoelastic models (OldroyD-B and Maxwell models).
Abstract: This investigation deals with the peristaltic flow of generalised Oldroyd-B fluids (with the fractional model) through a cylindrical tube under the influence of wall slip conditions. The analysis is carried out under the assumptions of long wavelength and low Reynolds number. Analytical approximate solutions are obtained by using the highly versatile and rigorous semi-numerical procedure known as the homotopy analysis method. It is assumed that the cross section of the tube varies sinusoidally along the length of the tube. The effects of the dominant hydromechanical parameters, i.e. fractional parameters, material constants, slip parameter, time and amplitude on the pressure difference across one wavelength, are studied. Graphical plots reveal that the influence of both fractional parameters on pressure is opposite to each other. Interesting responses to a variation in the constants are obtained. Pressure is shown to be reduced by increasing the slip parameter. Furthermore, the pressure in the case of fra...

71 citations


Journal ArticleDOI
TL;DR: This work represents the first patient-specific predictive modeling of stage 2 palliation using virtual surgery and closed-loop multi-scale modeling of congenital heart disease and single ventricle patients.
Abstract: In patients with congenital heart disease and a single ventricle (SV), ventricular support of the circulation is inadequate, and staged palliative surgery (usually 3 stages) is needed for treatment. In the various palliative surgical stages individual differences in the circulation are important and patient-specific surgical planning is ideal. In this study, an integrated approach between clinicians and engineers has been developed, based on patient-specific multi-scale models, and is here applied to predict stage 2 surgical outcomes. This approach involves four distinct steps: (1) collection of pre-operative clinical data from a patient presenting for SV palliation, (2) construction of the pre-operative model, (3) creation of feasible virtual surgical options which couple a three-dimensional model of the surgical anatomy with a lumped parameter model (LPM) of the remainder of the circulation and (4) performance of post-operative simulations to aid clinical decision making. The pre-operative model is described, agreeing well with clinical flow tracings and mean pressures. Two surgical options (bi-directional Glenn and hemi-Fontan operations) are virtually performed and coupled to the pre-operative LPM, with the hemodynamics of both options reported. Results are validated against postoperative clinical data. Ultimately, this work represents the first patient-specific predictive modeling of stage 2 palliation using virtual surgery and closed-loop multi-scale modeling.

55 citations


Journal ArticleDOI
TL;DR: A multiscale homogenisation scheme is extended to viscoelasticity, mineral-cluster-specific creep parameters are identified from three-point bending tests on hydrated bone samples, and the model is validated by statistically and physically independent experiments on partially dried samples.
Abstract: Extracellular bone material can be characterised as a nanocomposite where, in a liquid environment, nanometre-sized hydroxyapatite crystals precipitate within as well as between long fibre-like collagen fibrils (with diameters in the 100 nm range), as evidenced from neutron diffraction and transmission electron microscopy. Accordingly, these crystals are referred to as ‘interfibrillar mineral’ and ‘extrafibrillar mineral’, respectively. From a topological viewpoint, it is probable that the mineralisations start on the surfaces of the collagen fibrils (‘mineral-encrusted fibrils’), from where the crystals grow both into the fibril and into the extrafibrillar space. Since the mineral concentration depends on the pore spaces within the fibrils and between the fibrils (there is more space between them), the majority of the crystals (but clearly not all of them) typically lie in the extrafibrillar space. There, larger crystal agglomerations or clusters, spanning tens to hundreds of nanometers, develop in the course of mineralisation, and the micromechanics community has identified the pivotal role, which this extrafibrillar mineral plays for tissue elasticity. In such extrafibrillar crystal agglomerates, single crystals are stuck together, their surfaces being covered with very thin water layers. Recently, the latter have caught our interest regarding strength properties (Fritsch et al. 2009 J Theor Biol. 260(2): 230–252) – we have identified these water layers as weak interfaces in the extrafibrillar mineral of bone. Rate-independent gliding effects of crystals along the aforementioned interfaces, once an elastic threshold is surpassed, can be related to overall elastoplastic material behaviour of the hierarchical material ‘bone’. Extending this idea, the present paper is devoted to viscous gliding along these interfaces, expressing itself, at the macroscale, in the well-known experimentally evidenced phenomenon of bone viscoelasticity. In this context, a multiscale homogenisation scheme is extended to viscoelasticity, mineral-cluster-specific creep parameters are identified from three-point bending tests on hydrated bone samples, and the model is validated by statistically and physically independent experiments on partially dried samples. We expect this model to be relevant when it comes to prediction of time-dependent phenomena, e.g. in the context of bone remodelling.

52 citations


Journal ArticleDOI
TL;DR: The response of the muscle to transversal loading opens a window into the interdependence of contractile and deformation work, which can be used to specify and validate 3D muscle models.
Abstract: Skeletal muscles are surrounded by other muscles, connective tissue and bones, which may transfer transversal forces to the muscle belly. Simple Hill-type muscle models do not consider transversal forces. Thus, the aim of this study was to examine and model the influence of transversal muscle loading on contraction dynamics, e.g. on the rate of force development and on the maximum isometric muscle force (Fim). Isometric experiments with and without transversal muscle loading were conducted on rat muscles. The muscles were loaded (1.3 N cm− 2) by a custom-made plunger which was able to move in transversal direction. Then the muscle was fully stimulated, the isometric force was measured at the distal tendon and the movement of the plunger was captured with a high-speed camera. The interaction between the muscle and the transversal load was modelled based on energy balance between the (1) work done by the contractile component (CC) and (2) the work done to lift the load, to stretch the series elastic structu...

52 citations


Journal ArticleDOI
TL;DR: Investigating a proposed three-dimensional impact protocol for use in evaluating football helmets revealed that impact conditions influences the region of loading in functional regions of brain tissue that are associated with the symptoms of concussion and demonstrated that using brain deformation metrics may be more appropriate when evaluating risk of concussion.
Abstract: American football reports high incidences of head injuries, in particular, concussion. Research has described concussion as primarily a rotation dominant injury affecting the diffuse areas of brain tissue. Current standards do not measure how helmets manage rotational acceleration or how acceleration loading curves influence brain deformation from an impact and thus are missing important information in terms of how concussions occur. The purpose of this study was to investigate a proposed three-dimensional impact protocol for use in evaluating football helmets. The dynamic responses resulting from centric and non-centric impact conditions were examined to ascertain the influence they have on brain deformations in different functional regions of the brain that are linked to concussive symptoms. A centric and non-centric protocol was used to impact an American football helmet; the resulting dynamic response data was used in conjunction with a three-dimensional finite element analysis of the human brain to calculate brain tissue deformation. The direction of impact created unique loading conditions, resulting in peaks in different regions of the brain associated with concussive symptoms. The linear and rotational accelerations were not predictive of the brain deformation metrics used in this study. In conclusion, the test protocol used in this study revealed that impact conditions influences the region of loading in functional regions of brain tissue that are associated with the symptoms of concussion. The protocol also demonstrated that using brain deformation metrics may be more appropriate when evaluating risk of concussion than using dynamic response data alone.

49 citations


Journal ArticleDOI
TL;DR: A review of the algorithms used in ear segmentation is presented, and their specificities and difficulties as well as their advantages and disadvantages are identified and analysed using experimental examples.
Abstract: In recent years, the segmentation, i.e. the identification, of ear structures in video-otoscopy, computerised tomography (CT) and magnetic resonance (MR) image data, has gained significant importance in the medical imaging area, particularly those in CT and MR imaging. Segmentation is the fundamental step of any automated technique for supporting the medical diagnosis and, in particular, in biomechanics studies, for building realistic geometric models of ear structures. In this paper, a review of the algorithms used in ear segmentation is presented. The review includes an introduction to the usually biomechanical modelling approaches and also to the common imaging modalities. Afterwards, several segmentation algorithms for ear image data are described, and their specificities and difficulties as well as their advantages and disadvantages are identified and analysed using experimental examples. Finally, the conclusions are presented as well as a discussion about possible trends for future research concerning the ear segmentation.

Journal ArticleDOI
TL;DR: A mechanistic multi-scale mechanobiological model using finite element models and agent-based modelling is presented, which allows quantitative evaluation of the collagen matrix turnover following stent-induced arterial injury and the subsequent development of in-stent restenosis.
Abstract: Since their first introduction, stents have revolutionised the treatment of atherosclerosis; however, the development of in-stent restenosis still remains the Achilles' heel of stent deployment procedures. Computational modelling can be used as a means to model the biological response of arteries to different stent designs using mechanobiological models, whereby the mechanical environment may be used to dictate the growth and remodelling of vascular cells. Changes occurring within the arterial wall due to stent-induced mechanical injury, specifically changes within the extracellular matrix, have been postulated to be a major cause of activation of vascular smooth muscle cells and the subsequent development of in-stent restenosis. In this study, a mechanistic multi-scale mechanobiological model of in-stent restenosis using finite element models and agent-based modelling is presented, which allows quantitative evaluation of the collagen matrix turnover following stent-induced arterial injury and the subsequent development of in-stent restenosis. The model is specifically used to study the influence of stent deployment diameter and stent strut thickness on the level of in-stent restenosis. The model demonstrates that there exists a direct correlation between the stent deployment diameter and the level of in-stent restenosis. In addition, investigating the influence of stent strut thickness using the mechanobiological model reveals that thicker strut stents induce a higher level of in-stent restenosis due to a higher extent of arterial injury. The presented mechanobiological modelling framework provides a robust platform for testing hypotheses on the mechanisms underlying the development of in-stent restenosis and lends itself for use as a tool for optimisation of the mechanical parameters involved in stent design.

Journal ArticleDOI
TL;DR: Numerical results, obtained by using an incremental finite element formulation and addressing stretched tendinous tissues, prove consistency and accuracy of the model at both macroscale and microscale, confirming also the effectiveness of the multiscale modelling concept for successfully analysing physiopathological processes in biological tissues.
Abstract: Mechanobiology of cells in soft collagenous tissues is highly affected by both tissue response at the macroscale and stress/strain localization mechanisms due to features at lower scales. In this paper, the macroscale mechanical behaviour of soft collagenous tissues is modelled by a three-level multiscale approach, based on a multi-step homogenisation technique from nanoscale up to the macroscale. Nanoscale effects, related to both intermolecular cross-links and collagen mechanics, are accounted for, together with geometric nonlinearities at the microscale. Moreover, an effective submodelling procedure is conceived in order to evaluate the local stress and strain fields at the microscale, which is around and within cells. Numerical results, obtained by using an incremental finite element formulation and addressing stretched tendinous tissues, prove consistency and accuracy of the model at both macroscale and microscale, confirming also the effectiveness of the multiscale modelling concept for successfully...

Journal ArticleDOI
Yuefu Dong1, Guanghong Hu1, Yinghai Dong1, Yang Hu1, Qingrong Xu1 
TL;DR: The results of this study demonstrate meniscal tear and its resultant partial meniscectomy has a positive impact on the maintenance of high levels of contact stresses, which may improve the progression of knee OA, especially for partial meniscus damage.
Abstract: Knee osteoarthritis (OA) is believed to result from high levels of contact stresses on the articular cartilage and meniscus after meniscal damage. This study investigated the effect of meniscal tears and partial meniscectomies on the peak compressive and shear stresses in the human knee joint. An elaborate three-dimensional finite element model of knee joint including bones, articular cartilages, menisci and main ligaments was developed from computed tomography and magnetic resonance imaging images. This model was used to model four types of meniscal tears and their resultant partial meniscectomies and analysed under an axial 1150 N load at 0° flexion. Three different conditions were compared: a healthy knee joint, a knee joint with medial meniscal tears and a knee joint following partial meniscectomies. The numerical results showed that each meniscal tear and its resultant partial meniscectomy led to an increase in the peak compressive and shear stresses on the articular cartilages and meniscus in the medial knee compartment, especially for partial meniscectomy. Among the four types of meniscal tears, the oblique tear resulted in the highest values of the peak compressive and shear stresses. For the four partial meniscectomies, longitudinal meniscectomy led to the largest increase in these two stresses. The lateral compartment was minimally affected by all the simulations. The results of this study demonstrate meniscal tear and its resultant partial meniscectomy has a positive impact on the maintenance of high levels of contact stresses, which may improve the progression of knee OA, especially for partial meniscectomy. Surgeons should adopt a prudent strategy to preserve the greatest amount of meniscus possible.

Journal ArticleDOI
TL;DR: The meshless total Lagrangian adaptive dynamic relaxation (MTLADR) algorithm is presented, which relies on spatial discretisation in a form of a cloud of nodes to model cutting-induced discontinuity in soft tissue mechanical responses.
Abstract: Computation of soft tissue mechanical responses for surgery simulation and image-guided surgery has been dominated by the finite element (FE) method that utilises a mesh of interconnected elements as a computational grid. Shortcomings of such mesh-based discretisation in modelling of surgical cutting include high computational cost and the need for re-meshing in the vicinity of cutting-induced discontinuity. The meshless total Lagrangian adaptive dynamic relaxation (MTLADR) algorithm we present here does not exhibit such shortcomings, as it relies on spatial discretisation in a form of a cloud of nodes. The cutting-induced discontinuity is modelled solely through changes in nodal domains of influence, which is done through efficient implementation of the visibility criterion using the level set method. Accuracy of our MTLADR algorithm with visibility criterion is confirmed against the established nonlinear solution procedures available in the commercial FE code Abaqus.

Journal ArticleDOI
TL;DR: This model provides insight into hepatic microhaemodynamics, and suggests that inclusion of VS in the model leads to perfusion patterns that are likely to reflect physiological reality and has potential for applications to unphysiological and pathological conditions.
Abstract: The hepatic blood circulation is complex, particularly at the microcirculatory level. Previously, 2D liver lobule models using porous media and a 3D model using real sinusoidal geometries have been developed. We extended these models to investigate the role of vascular septa (VS) and anisotropic permeability. The lobule was modelled as a hexagonal prism (with or without VS) and the tissue was treated as a porous medium (isotropic or anisotropic permeability). Models were solved using computational fluid dynamics. VS inclusion resulted in more spatially homogeneous perfusion. Anisotropic permeability resulted in a larger axial velocity component than isotropic permeability. A parameter study revealed that results are most sensitive to the lobule size and radial pressure drop. Our model provides insight into hepatic microhaemodynamics, and suggests that inclusion of VS in the model leads to perfusion patterns that are likely to reflect physiological reality. The model has potential for applications to unphysiological and pathological conditions.

Journal ArticleDOI
TL;DR: This paper presents an operator splitting framework for strongly coupled electro-mechanical simulations and discusses alternative strategies for updating and linearising the active stress component.
Abstract: Sundnes, Joakim; Wall, Samuel Thomas; Osnes, Harald; Thorvaldsen, Tom; McCulloch, Andrew. Improved discretisation and linearisation of active tension in strongly coupled cardiac electro-mechanics simulations. Computer Methods in Biomechanics and Biomedical Engineering 2014 ;Volum 17.(6) s. 604-615

Journal ArticleDOI
TL;DR: A three-dimensional finite element model based on the specific anatomy of a patient presenting a femoroacetabular impingement of the ‘cam’-type is developed to better interpret the mechanism of aggression of the femoral and acetabular cartilages.
Abstract: In this study, a three-dimensional finite element (FE) model based on the specific anatomy of a patient presenting a femoroacetabular impingement of the 'cam'-type is developed. The FE meshes of the structures of interest are obtained from arthrographic magnetic resonance images. All soft tissues are considered linear elastic and isotropic, and the bones were assumed rigid. A compression of the femur on the acetabular cavity as well as flexural movements and internal rotations are applied. Stresses and contact pressures are evaluated in this patient-specific model in order to better interpret the mechanism of aggression of the femoral and acetabular cartilages. The corresponding results are presented and discussed. The values obtained for the contact pressures are similar to those reported by other models based on idealised geometries. An FE analysis of a non-cam hip is also performed for comparison with the pathological case.

Journal ArticleDOI
TL;DR: A transient multi-physics model of the mitral heart valve has been developed, which allows simultaneous calculation of fluid flow and structural deformation and predictions were found to be consistent with existing literature.
Abstract: A transient multi-physics model of the mitral heart valve has been developed, which allows simultaneous calculation of fluid flow and structural deformation. A recently developed contact method has been applied to enable simulation of systole (the stage when blood pressure is elevated within the heart to pump blood to the body). The geometry was simplified to represent the mitral valve within the heart walls in two dimensions. Only the mitral valve undergoes deformation. A moving arbitrary Lagrange-Euler mesh is used to allow true fluid-structure interaction (FSI). The FSI model requires blood flow to induce valve closure by inducing strains in the region of 10-20%. Model predictions were found to be consistent with existing literature and will undergo further development.

Journal ArticleDOI
TL;DR: Numerical simulations of blood flow in a patient-specific anatomical model of the left ventricle (LV) and the aortic sinus are presented and good agreement was found between simulation results and measurements.
Abstract: Understanding cardiac blood flow patterns has many applications in analysing haemodynamics and for the clinical assessment of heart function. In this study, numerical simulations of blood flow in a patient-specific anatomical model of the left ventricle (LV) and the aortic sinus are presented. The realistic 3D geometry of both LV and aortic sinus is extracted from the processing of magnetic resonance imaging (MRI). Furthermore, motion of inner walls of LV and aortic sinus is obtained from cine-MR image analysis and is used as a constraint to a numerical computational fluid dynamics (CFD) model based on the moving boundary approach. Arbitrary Lagrangian-Eulerian finite element method formulation is used for the numerical solution of the transient dynamic equations of the fluid domain. Simulation results include detailed flow characteristics such as velocity, pressure and wall shear stress for the whole domain. The aortic outflow is compared with data obtained by phase-contrast MRI. Good agreement was found between simulation results and these measurements.

Journal ArticleDOI
TL;DR: The proposed framework allows us to explore how local action potential durations on the microscopic scale translate into global repolarisation sequences on the macroscopic scale and it is anticipated that the calibrated human heart model can be widely used to explore cardiac excitation in health and disease.
Abstract: For more than a century, electrophysiologists, cardiologists and engineers have studied the electrical activity of the human heart to better understand rhythm disorders and possible treatment options. Although the depolarisation sequence of the heart is relatively well characterised, the repolarisation sequence remains a subject of great controversy. Here, we study regional and temporal variations in both depolarisation and repolarisation using a finite element approach. We discretise the governing equations in time using an unconditionally stable implicit Euler backward scheme and in space using a consistently linearised Newton-Raphson-based finite element solver. Through systematic parameter-sensitivity studies, we establish a direct relation between a normal positive T-wave and the non-uniform distribution of the controlling parameter, which we have termed refractoriness. To establish a healthy baseline model, we calibrate the refractoriness using clinically measured action potential durations at different locations in the human heart. We demonstrate the potential of our model by comparing the computationally predicted and clinically measured depolarisation and repolarisation profiles across the left ventricle. The proposed framework allows us to explore how local action potential durations on the microscopic scale translate into global repolarisation sequences on the macroscopic scale. We anticipate that our calibrated human heart model can be widely used to explore cardiac excitation in health and disease. For example, our model can serve to identify optimal pacing sites in patients with heart failure and to localise optimal ablation sites in patients with cardiac fibrillation.

Journal ArticleDOI
TL;DR: It is concluded that the stiffness of the foam has a prominent role in reducing the level of the transferred load to the brain in a human brain model subjected to a ballistic impact.
Abstract: The results of a computational study of a helmeted human head are presented in this paper. The focus of the work is to study the effects of helmet pad materials on the level of acceleration, inflicted pressure and shear stress in a human brain model subjected to a ballistic impact. Four different closed cell foam materials, made of expanded polystyrene and expanded polypropylene, are examined for the padding material. It is assumed that bullets cannot penetrate the helmet shell. Finite element modelling of the helmet, padding system, head and head components is used for this dynamic nonlinear analysis. Appropriate contacts and conditions are applied between the different components of the head, as well as between the head and the pads, and the pads and the helmet. Based on the results of simulations in this work, it is concluded that the stiffness of the foam has a prominent role in reducing the level of the transferred load to the brain. A pad that is less stiff is more efficient in absorbing the impact ...

Journal ArticleDOI
TL;DR: The fidelity of the computational model was improved through additional muscle representation and inclusion of relative hip–ankle anterior–posterior (A–P) motion and the PID-controlled model was able to successfully recreate in vivo loading conditions for deep knee bend, chair rise, stance-phase gait and step-down activities.
Abstract: Validated computational knee simulations are valuable tools for design phase development of knee replacement devices. Recently, a dynamic finite element (FE) model of the Kansas knee simulator was kinematically validated during gait and deep flexion cycles. In order to operate the computational simulator in the same manner as the experiment, a proportional–integral–derivative (PID) controller was interfaced with the FE model to control the quadriceps actuator excursion and produce a target flexion profile regardless of implant geometry or alignment conditions. The controller was also expanded to operate multiple actuators simultaneously in order to produce in vivo loading conditions at the joint during dynamic activities. Subsequently, the fidelity of the computational model was improved through additional muscle representation and inclusion of relative hip–ankle anterior–posterior (A–P) motion. The PID-controlled model was able to successfully recreate in vivo loading conditions (flexion angle, compressi...

Journal ArticleDOI
TL;DR: Results from the combined experimental and theoretical approach suggest that the average flexural rigidity of primary cilia might be higher than previously reported, and indicate that the mechanics ofPrimary cilia are richly varied and mechanisms may exist to alter their mechanical behaviour.
Abstract: In this study we have developed a novel model of the deflection of primary cilia experiencing fluid flow accounting for phenomena not previously considered. Specifically, we developed a large rotation formulation that accounts for rotation at the base of the cilium, the initial shape of the cilium and fluid drag at high deflection angles. We utilised this model to analyse full 3D data-sets of primary cilia deflecting under fluid flow acquired with high-speed confocal microscopy. We found a wide variety of previously unreported bending shapes and behaviours. We also analysed post-flow relaxation patterns. Results from our combined experimental and theoretical approach suggest that the average flexural rigidity of primary cilia might be higher than previously reported (Schwartz et al. 1997, Am J Physiol. 272(1 Pt 2):F132-F138). In addition our findings indicate that the mechanics of primary cilia are richly varied and mechanisms may exist to alter their mechanical behaviour.

Journal ArticleDOI
TL;DR: The results showed that WSS decreased while WPSG was increased in coronary side branches due to the presence of plaques, and there is a direct correlation between coronary plaques and subsequent WSS and WpsG variations based on the bifurcation plaques simulated in the realistic coronary models.
Abstract: In this study, we investigate plaques located at the left coronary bifurcation. We focus on the effect that the resulting changes in wall shear stress (WSS) and wall pressure stress gradient (WPSG) have on atherosclerotic progress in coronary artery disease. Coronary plaques were simulated and placed at the left main stem and the left anterior descending to produce >50% narrowing of the coronary lumen. Computational fluid dynamics analysis was carried out, simulating realistic physiological conditions that show the in vivo cardiac haemodynamic. WSS and WPSG in the left coronary artery were calculated and compared in the left coronary models, with and without the presence of plaques during cardiac cycles. Our results showed that WSS decreased while WPSG was increased in coronary side branches due to the presence of plaques. There is a direct correlation between coronary plaques and subsequent WSS and WPSG variations based on the bifurcation plaques simulated in the realistic coronary models.

Journal ArticleDOI
TL;DR: An existing lumped-parameter model of multiple lymphangions in series is adapted for the incorporation of recent physiological measurements of lymphatic vascular properties, and new data show very marked nonlinearity of the passive pressure–diameter relation during distension, relative to comparable blood vessels, and complex valve behaviour.
Abstract: An existing lumped-parameter model of multiple lymphangions (lymphatic vascular segments) in series is adapted for the incorporation of recent physiological measurements of lymphatic vascular properties. The new data show very marked nonlinearity of the passive pressure–diameter relation during distension, relative to comparable blood vessels, and complex valve behaviour. Since lymph is transported as a result of either the active contraction or the passive squeezing of vascular segments situated between two one-way valves, the performance of these valves is of primary importance. The valves display hysteresis (the opening and closing pressure drop thresholds differ), a bias to staying open (both state changes occur when the trans-valve pressure drop is adverse) and pressure-drop threshold dependence on transmural pressure. These properties, in combination with the strong nonlinearity that valve operation represents, have in turn caused intriguing numerical problems in the model, and we describe numerical...

Journal ArticleDOI
TL;DR: It was found that the maximum stress of the peri-implant bone decreased as cortical bone thickness increased and the micromotion level in full osseointegration is less than that in non-osseointEGration and it also decreases as cortex bone thickness increases.
Abstract: The aims of this study were to examine the effect of implant neck design and cortical bone thickness using 3D finite element analysis and to analyse the stability of clinical evidence based on micromotion and principal stress. Four commercial dental implants for a type IV bone and maxillary segments were created. Various parameters were considered, including the osseointegration condition, loading direction and cortical bone thickness. Micromotion and principal stresses were used to evaluate the failure of osseointegration and bone overloading, respectively. It was found that the maximum stress of the peri-implant bone decreased as cortical bone thickness increased. The micromotion level in full osseointegration is less than that in non-osseointegration and it also decreases as cortical bone thickness increases. The cortical bone thickness should be measured before surgery to help select a proper implant. In the early stage of implantation, the horizontal loading component induces stress concentration in bone around the implant neck more easily than does the vertical loading component, and this may result in crestal bone loss.

Journal ArticleDOI
TL;DR: A 0D/1D computational model of arm vasculature able to simulate vessel wall remodelling and related changes in blood flow is developed and may allow accurate vascular surgery planning and ameliorate VA surgery outcomes.
Abstract: An important number of surgical procedures for creation of vascular access (VA) in haemodialysis patients still results in non-adequate increase in blood flow (non-maturation). The rise in blood flow in arteriovenous shunts depends on vascular remodelling. Computational tools to predict the outcome of VA surgery would be important in this clinical context. The aim of our investigation was then to develop a 0D/1D computational model of arm vasculature able to simulate vessel wall remodelling and related changes in blood flow. We assumed that blood vessel remodelling is driven by peak wall shear stress. The model was calibrated with previously reported values of radial artery diameter and blood flow after end-to-end distal fistula creation. Good agreement was obtained between predicted changes in VA flow and in arterial diameter after surgery and corresponding measured values. The use of this computational model may allow accurate vascular surgery planning and ameliorate VA surgery outcomes.

Journal ArticleDOI
TL;DR: It is suggested that calcification may have a substantial effect on the stiffness of the costal cartilage which should be considered when modelling the chest, especially if age is a factor.
Abstract: The costal cartilage often undergoes progressive calcification with age. This study sought to investigate the effects of calcification on the structural mechanics of whole costal cartilage segments. Models were developed for five costal cartilage specimens, including representations of the cartilage, the perichondrium, calcification, and segments of the rib and sternum. The material properties of the cartilage were determined through indentation testing; the properties of the perichondrium were determined through optimisation against structural experiments. The calcified regions were then expanded or shrunk to develop five different sensitivity analysis models for each. Increasing the relative volume of calcification from 0% to 24% of the cartilage volume increased the stiffness of the costal cartilage segments by a factor of 2.3-3.8. These results suggest that calcification may have a substantial effect on the stiffness of the costal cartilage which should be considered when modelling the chest, especially if age is a factor.

Journal ArticleDOI
TL;DR: The present findings suggest that the evaluation of bone morphometry should be done with images registered using greyscale information, and depending on the interpolator, the processing order of registration, Gaussian filtration and binarisation played a role.
Abstract: Time-lapsed in vivo micro-computed tomography is a powerful tool to analyse longitudinal changes in the bone micro-architecture. Registration can overcome problems associated with spatial misalignment between scans; however, it requires image interpolation which might affect the outcome of a subsequent bone morphometric analysis. The impact of the interpolation error itself, though, has not been quantified to date. Therefore, the purpose of this ex vivo study was to elaborate the effect of different interpolator schemes [nearest neighbour, tri-linear and B-spline (BSP)] on bone morphometric indices. None of the interpolator schemes led to significant differences between interpolated and non-interpolated images, with the lowest interpolation error found for BSPs (1.4%). Furthermore, depending on the interpolator, the processing order of registration, Gaussian filtration and binarisation played a role. Independent from the interpolator, the present findings suggest that the evaluation of bone morphometry sh...