scispace - formally typeset
Search or ask a question

Showing papers in "Geochemistry Geophysics Geosystems in 2016"


Journal ArticleDOI
TL;DR: The PmagPy software package is described and the power of data discovery and reuse is illustrated through a reanalysis of published paleointensity data which illustrates how the effectiveness of selection criteria can be tested.
Abstract: The Magnetics Information Consortium (MagIC) database provides an archive with a flexible data model for paleomagnetic and rock magnetic data. The PmagPy software package is a cross-platform and open-source set of tools written in Python for the analysis of paleomagnetic data that serves as one interface to MagIC, accommodating various levels of user expertise. PmagPy facilitates thorough documentation of sampling, measurements, data sets, visualization, and interpretation of paleomagnetic and rock magnetic experimental data. Although not the only route into the MagIC database, PmagPy makes preparation of newly published data sets for contribution to MagIC as a byproduct of normal data analysis and allows manipulation as well as reanalysis of data sets downloaded from MagIC with a single software package. The graphical user interface (GUI), Pmag GUI enables use of much of PmagPy's functionality, but the full capabilities of PmagPy extend well beyond that. Over 400 programs and functions can be called from the command line interface mode, or from within the interactive Jupyter notebooks. Use of PmagPy within a notebook allows for documentation of the workflow from the laboratory to the production of each published figure or data table, making research results fully reproducible. The PmagPy design and its development using GitHub accommodates extensions to its capabilities through development of new tools by the user community. Here we describe the PmagPy software package and illustrate the power of data discovery and reuse through a reanalysis of published paleointensity data which illustrates how the effectiveness of selection criteria can be tested.

200 citations


Journal ArticleDOI
TL;DR: In-situ synchrotron X-ray computed microtomography with sub-micrometer voxel size was used to study the decomposition of gas hydrates in a sedimentary matrix.
Abstract: In-situ synchrotron X-ray computed microtomography with sub-micrometer voxel size was used to study the decomposition of gas hydrates in a sedimentary matrix. Xenon-hydrate was used instead of methane hydrate to enhance the absorption contrast. The microstructural features of the decomposition process were elucidated indicating that the decomposition starts at the hydrate-gas interface; it does not proceed at the contacts with quartz grains. Melt water accumulates at retreating hydrate surface. The decomposition is not homogeneous and the decomposition rates depend on the distance of the hydrate surface to the gas phase indicating a diffusion-limitation of the gas transport through the water phase. Gas is found to be metastably enriched in the water phase with a concentration decreasing away from the hydrate-water interface. The initial decomposition process facilitates redistribution of fluid phases in the pore space and local re-formation of gas hydrates. The observations allow also rationalizing earlier conjectures from experiments with low spatial resolutions and suggest that the hydrate-sediment assemblies remain intact until the hydrate spacers between sediment grains finally collapse; possible effects on mechanical stability and permeability are discussed. The resulting time resolved characteristics of gas hydrate decomposition and the influence of melt water on the reaction rate are of importance for a suggested gas recovery from marine sediments by depressurization. This article is protected by copyright. All rights reserved.

198 citations


Journal ArticleDOI
TL;DR: In this paper, the authors determined a 3D P-wave velocity model of the upper mantle under eastern Tibet using 112,613 high-quality arrival-time data collected from teleseismic seismograms recorded by a new portable seismic array in Yunnan and permanent networks in southwestern China.
Abstract: We determined a new 3-D P-wave velocity model of the upper mantle beneath eastern Tibet using 112,613 high-quality arrival-time data collected from teleseismic seismograms recorded by a new portable seismic array in Yunnan and permanent networks in southwestern China Our results provide new insights into the mantle structure and dynamics of eastern Tibet High-velocity (high-V) anomalies are revealed down to 200 km depth under the Sichuan basin and the Ordos and Alashan blocks Low-velocity (low-V) anomalies are imaged in the upper mantle under the Kunlun-Qilian and Qinling fold zones, and the Songpan-Ganzi, Qiangtang, Lhasa and Chuan-Dian diamond blocks, suggesting that eastward moving low-V materials are extruded to eastern China after the obstruction by the Sichuan basin, and the Ordos and Alashan blocks Furthermore, the extent and thickness of these low-V anomalies are correlated with the surface topography, suggesting that the uplift of eastern Tibet could be partially related to these low-V materials having a higher temperature and strong positive buoyancy In the mantle transition zone (MTZ), broad high-V anomalies are visible from the Burma arc northward to the Kunlun fault and eastward to the Xiaojiang fault, and they are connected upward with the Wadati-Benioff seismic zone These results suggest that the subducted Indian slab has traveled horizontally for a long distance after it descended into the MTZ, and return corner flow and deep slab dehydration have contributed to forming the low-V anomalies in the big mantle wedge Our results shed new light on the dynamics of the eastern Tibetan plateau

123 citations


Journal ArticleDOI
TL;DR: In this paper, the combined techniques of micro-focus X-ray computed tomography (CT) and pore-network model simulation were used to identify proper values for those key parameters, such as gas entry pressure, residual water saturation, and curve fitting values.
Abstract: The water retention curve and relative permeability are critical to predict gas and water production from hydrate-bearing sediments. However, values for key parameters that characterize gas and water flows during hydrate dissociation have not been identified due to experimental challenges. This study utilizes the combined techniques of micro-focus X-ray computed tomography (CT) and pore-network model simulation to identify proper values for those key parameters, such as gas entry pressure, residual water saturation, and curve fitting values. Hydrates with various saturation and morphology are realized in the pore-network that was extracted from micron-resolution CT images of sediments recovered from the hydrate deposit at the Mallik site, and then the processes of gas invasion, hydrate dissociation, gas expansion, and gas and water permeability are simulated. Results show that greater hydrate saturation in sediments lead to higher gas entry pressure, higher residual water saturation, and steeper water retention curve. An increase in hydrate saturation decreases gas permeability but has marginal effects on water permeability in sediments with uniformly distributed hydrate. Hydrate morphology has more significant impacts than hydrate saturation on relative permeability. Sediments with heterogeneously distributed hydrate tend to result in lower residual water saturation and higher gas and water permeability. In this sense, the Brooks-Corey model that uses two fitting parameters individually for gas and water permeability properly capture the effect of hydrate saturation and morphology on gas and water flows in hydrate-bearing sediments.

116 citations


Journal ArticleDOI
TL;DR: In this paper, the authors describe an algorithm, software, and data to make seismic velocities from the physical properties of minerals, using MATLAB tools for integration of these calculations into a variety of modeling and data analysis projects.
Abstract: To interpret seismic images, rock seismic velocities need to be calculated at elevated pressure and temperature for arbitrary compositions. This technical report describes an algorithm, software, and data to make such calculations from the physical properties of minerals. It updates a previous compilation and Excel® spreadsheet and includes new MATLAB® tools for the calculations. The database of 60 mineral end-members includes all parameters needed to estimate density and elastic moduli for many crustal and mantle rocks at conditions relevant to the upper few hundreds of kilometers of Earth. The behavior of α and β quartz is treated as a special case, owing to its unusual Poisson's ratio and thermal expansion that vary rapidly near the α-β transition. The MATLAB tools allow integration of these calculations into a variety of modeling and data analysis projects.

106 citations


Journal ArticleDOI
TL;DR: In this paper, the authors jointly invert seismic surface wave velocities and basalt thermobarometry to better constrain the temperature structure in the upper mantle, which can be used to predict the results of laboratory experiments on melts.
Abstract: To better constrain the temperature structure in the upper mantle, we jointly invert seismic surface wave velocities and basalt thermobarometry. New measurements of the water concentration (1.0–3.5 wt %) and oxygen fugacity (FMQ + 0.5 to + 1.5) of basalts from seven recently active volcanic fields in the Basin and Range province (Cima, Pisgah, Amboy, Big Pine, Black Rock, Snow Canyon, W. Grand Canyon) enable more accurate equilibration pressure (P) and temperature (T) estimates of the mantle melts. We developed a revised thermobarometer that more precisely predicts the results of laboratory experiments on melts equilibrated with olivine and orthopyroxene and accounts for the effects of water and CO2. Applying these methods to basalts from the Basin and Range we find that most equilibrated near the dry solidus in P-T space and at depths in the vicinity of the lithosphere-asthenosphere boundary (LAB) inferred from receiver function analysis and Rayleigh surface wave tomography. The wet basalts should have begun melting well below the dry solidus, so the depths of equilibration probably reflect ponding of rising melts beneath the nominally dry lithosphere. A two-parameter thermal model is sufficient to simultaneously satisfy both the seismological and petrological constraints. In the model, the depth to the dry solidus defines the bottom boundary of the conductive lid, while the potential temperature (Tp) controls the asthenosphere and LAB thermal structure. The optimum estimates of Tp range from 1500°C, and depths to the LAB range from ∼55 to 75 km, with uncertainties on the order of ±50°C and ±10 km. In contrast to standard tomographic images or basalt thermobarometry, the output of the joint inversion is a geotherm that can be tested quantitatively against other observations.

97 citations


Journal ArticleDOI
TL;DR: The Schapenburg komatiites were derived from mantle enriched in the decay products of the long-lived 147Sm and 176Lu nuclides (initial γ187Os = +3.7 ± 0.3, 2SD) as discussed by the authors.
Abstract: New Sm-Nd, Lu-Hf, Hf-W, and Re-Os isotope data, in combination with highly siderophile element (HSE, including Re, Os, Ir, Ru, Pt, and Pd) and W abundances, are reported for the 3.55 Ga Schapenburg komatiites, South Africa. The Schapenburg komatiites define a Re-Os isochron with an age of 3550 ± 87 Ma and initial γ187Os = +3.7 ± 0.2 (2SD). The absolute HSE abundances in the mantle source of the Schapenburg komatiite system are estimated to be only 29 ± 5% of those in the present-day bulk silicate Earth (BSE). The komatiites were derived from mantle enriched in the decay products of the long-lived 147Sm and 176Lu nuclides (initial ɛ143Nd = +2.4 ± 0.1, ɛ176Hf = +5.7 ± 0.3, 2SD). By contrast, the komatiites are depleted, relative to the modern mantle, in 142Nd and 182W (μ182W = −8.4 ± 4.5, μ142Nd = −4.9 ± 2.8, 2SD). These results constitute the first observation in terrestrial rocks of coupled depletions in 142Nd and 182W. Such isotopic depletions require derivation of the komatiites from a mantle domain that formed within the first ∼30 Ma of Solar System history and was initially geochemically enriched in highly incompatible trace elements as a result of crystal-liquid fractionation in an early magma ocean. This mantle domain further must have experienced subsequent melt depletion, after 182Hf had gone extinct, to account for the observed initial excesses in 143Nd and 176Hf. The survival of early-formed 182W and 142Nd anomalies in the mantle until at least 3.55 Ga indicates that the products of early planetary differentiation survived both later planetary accretion and convective mantle mixing during the Hadean. This work moreover renders unlikely that variable late accretion, by itself, can account for all of the observed W isotope variations in Archean rocks.

88 citations


Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors showed that the Darutso volcanic rocks (DVRs) within ophiolitic melange in the Beila area, central Tibet, crystallized at ∼164-162 Ma.
Abstract: In addition to fluids, the concept of sediment-derived melts infiltrating the fore-arc mantle during subduction initiation has been proposed based on studies of modern subduction zones and ophiolite melange. However, outcrops that contain the products of such melts are rare, especially in conjunction with boninite. New U–Pb zircon dating reveals that the Darutso volcanic rocks (DVRs) within ophiolitic melange in the Beila area, central Tibet, crystallized at ∼164–162 Ma. This is the first recognition of Jurassic volcanic rocks in the middle section of the Bangong–Nujiang Suture Zone. Geochemically, the DVRs are high-Mg andesites with moderate SiO2 (59.03–63.62 wt%) and high MgO (3.74–6.53 wt%), Cr (up to 395 ppm), and Mg# (50.3–67.9). They also have high Th contents, (La/Sm)N ratios, and (87Sr/86Sr)i values (0.7085–0.7147); low Ba/Th, U/Th, and Sr/Y ratios; and negative values of eNd(t) (−8.7 to −9.8) and zircon eHf(t) (−7.4 to −9.9). The eNd(t) values of the DVRs overlap those of regional sediments. Detailed analyses of these geochemical characteristics indicate that the DVRs were derived from partial melting of subducted sediments and subsequent interaction with overlying mantle peridotite in a shallow and hot setting. In combination with the regional geology, in particular adjacent ophiolites that contain MORB-like and boninite mafic lavas, these rocks collectively recorded the evolution of a fore-arc setting during the initiation of the northward subduction of the south branch of the Bangong–Nujiang Ocean. Therefore, the results provide direct evidence for sediment melting during subduction initiation and constrain the Jurassic tectonic evolution of the Lhasa terrane. This article is protected by copyright. All rights reserved.

87 citations


Journal ArticleDOI
TL;DR: In this paper, the authors assess which methods are most promising for the next generation of supercomputers, which will offer access to O(106) processor cores for large problems.
Abstract: Numerical simulations of the geodynamo have successfully represented many observable characteristics of the geomagnetic field, yielding insight into the fundamental processes that generate magnetic fields in the Earth's core. Because of limited spatial resolution, however, the diffusivities in numerical dynamo models are much larger than those in the Earth's core, and consequently, questions remain about how realistic these models are. The typical strategy used to address this issue has been to continue to increase the resolution of these quasi-laminar models with increasing computational resources, thus pushing them toward more realistic parameter regimes. We assess which methods are most promising for the next generation of supercomputers, which will offer access to O(106) processor cores for large problems. Here we report performance and accuracy benchmarks from 15 dynamo codes that employ a range of numerical and parallelization methods. Computational performance is assessed on the basis of weak and strong scaling behavior up to 16,384 processor cores. Extrapolations of our weak-scaling results indicate that dynamo codes that employ two-dimensional or three-dimensional domain decompositions can perform efficiently on up to ∼106 processor cores, paving the way for more realistic simulations in the next model generation.

83 citations


Journal ArticleDOI
TL;DR: In this paper, detrital zircon U-Pb geochronology was used to explore the source-to-sink characteristics of syn-rift sequences in the northern South China Sea.
Abstract: The early rift sedimentation history of the South China Sea is still not well understood due to restricted borehole coverage of the Paleogene strata and lack of reliable stratigraphic dating. We use detrital zircon U-Pb geochronology to explore the source-to-sink characteristics of syn-rift sequences in the northern South China Sea. The results reveal significant intrabasinal provenances in addition to the well-perceived terrigenous supply from the north. The Dongsha Uplift is considered to account for the dominance of the Early Cretaceous zircons in the Eocene samples. The Lower Oligocene sediments in the Qiongdongnan Basin could have been sourced from Hainan Island and local uplifts, but their distinction cannot be confirmed by the U-Pb age spectra. Contemporary sediments in the northern Pearl River Mouth Basin were most likely transported from southeastern South China with well-rounded zircon grains showing U-Pb age similarity to those from the northeastern tributaries of the Pearl River. By contrast, intrabasinal sources from the west and east are suggested to have contributed the infill of the southern part of the Pearl River Mouth Basin based on generally euhedral zircon shapes. These sedimentary source patterns appear to change very little in the Oligocene northern South China Sea. However, the newly detected Neoproterozoic zircons in the Upper Oligocene sediments from borehole L21 tend to indicate a southern source. The episodic and diachronic nature of rifting and erosion processes in the early South China Sea is the cause of complex patterns in the Paleogene provenance history.

82 citations


Journal ArticleDOI
TL;DR: The EarthScope Southern and Eastern California Lidar Project (http://opentopo.sdsc.edu) involved data acquisition and processing for the Plate Boundary Observatory (PBO) by NCALM as discussed by the authors.
Abstract: Data sets and expanded results contributing to this study are available in the supporting information. The EarthScope Southern and Eastern California Lidar Project (available online at http://opentopo.sdsc.edu) involved data acquisition and processing for the Plate Boundary Observatory (PBO) by NCALM (http://www.ncalm.org). UNAVCO operates the PBO for EarthScope (http://www.earthscope.org), supported by the National Science Foundation (EAR-0350028 and EAR-0732947). Funding for this study was provided by the Southern California Earthquake Center (SCEC) (Project 12140), the Geological Society of America Graduate Student Research fund, the Community Foundation of San Bernardino county, and the Western Washington University Geology Department. We thank G. Seitz, M. Price, and K. Morgan for assistance in the field, and S. Bacon, J. Arrowsmith, R. Weldon, K. Scharer, J. Unruh, C. Madden-Madugo, and D. Haddad for helpful discussions. Constructive reviews by D. Schwartz, R. Briggs, E. Schermer, D. Clark, and one anonymous reviewer substantially improved the paper. We also thank the staff at the UC White Mountain Research Center for facilitating this work. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the relationship between climate, mantle, and core dynamics and found that plate tectonics plays a vital role in the long-term carbon cycle, which helps to maintain a temperate climate.
Abstract: Earth's climate, mantle, and core interact over geologic time scales. Climate influences whether plate tectonics can take place on a planet, with cool climates being favorable for plate tectonics because they enhance stresses in the lithosphere, suppress plate boundary annealing, and promote hydration and weakening of the lithosphere. Plate tectonics plays a vital role in the long-term carbon cycle, which helps to maintain a temperate climate. Plate tectonics provides long-term cooling of the core, which is vital for generating a magnetic field, and the magnetic field is capable of shielding atmospheric volatiles from the solar wind. Coupling between climate, mantle, and core can potentially explain the divergent evolution of Earth and Venus. As Venus lies too close to the sun for liquid water to exist, there is no long-term carbon cycle and thus an extremely hot climate. Therefore, plate tectonics cannot operate and a long-lived core dynamo cannot be sustained due to insufficient core cooling. On planets within the habitable zone where liquid water is possible, a wide range of evolutionary scenarios can take place depending on initial atmospheric composition, bulk volatile content, or the timing of when plate tectonics initiates, among other factors. Many of these evolutionary trajectories would render the planet uninhabitable. However, there is still significant uncertainty over the nature of the coupling between climate, mantle, and core. Future work is needed to constrain potential evolutionary scenarios and the likelihood of an Earth-like evolution.

Journal ArticleDOI
TL;DR: In this article, the authors derive a microphysical model based on asperity contact mechanics and show that these relationships are dictated by an activation energy that controls the rate of as perity growth by plastic creep, and an inverse relationship between material hardness and the activation volume of plastic deformation.
Abstract: The evolution of fault strength during the seismic cycle plays a key role in the mode of fault slip, nature of earthquake stress drop, and earthquake nucleation. Laboratory-based rate- and state-dependent friction (RSF) laws can describe changes in fault strength during slip, but the connections between fault strength and the mechanisms that dictate the mode of failure, from aseismic creep to earthquake rupture, remain poorly understood. The empirical nature of RSF laws remains a drawback to their application in nature. Here we analyze an extensive data set of friction constitutive parameters with the goal of illuminating the microphysical processes controlling RSF. We document robust relationships between: (1) the initial value of sliding (or kinetic) friction, (2) RSF parameters, and (3) the time rates of frictional strengthening (aging). We derive a microphysical model based on asperity contact mechanics and show that these relationships are dictated by: (1) an activation energy that controls the rate of asperity growth by plastic creep, and (2) an inverse relationship between material hardness and the activation volume of plastic deformation. Collectively, our results illuminate the physics expressed by the RSF parameters, and which describe the absolute value of frictional strength and its dependence on time and slip rate. Moreover, we demonstrate that seismogenic fault behavior may be dictated by the interplay between grain properties and ambient conditions controlling the local shear strength of grain-scale asperity contacts.

Journal ArticleDOI
TL;DR: In this article, a 3D velocity model of the area to define the geometry of the lithosphere subducting below the Colombian Andes is presented, which is consistent with the abrupt disappearance of volcanism in the Andes of South America at latitudes 5°N.
Abstract: Seismicity at the northern terminus of the Nazca subduction is diffused over a wide area containing the puzzling seismic feature known as the Bucaramanga nest. We relocate about 5000 earthquakes recorded by the Colombian national seismic network and produce the first 3-D velocity model of the area to define the geometry of the lithosphere subducting below the Colombian Andes. We found lateral velocity heterogeneities and an abrupt offset of the Wadati-Benioff zone at 5°N indicating that the Nazca plate is segmented by an E-W slab tear, that separates a steeper Nazca segment to the south from a flat subduction to the north. The flat Nazca slab extends eastward for about 400 km, before dip increases to ∼50° beneath the Eastern Cordillera, where it yields the Bucaramanga nest. We explain this puzzling locus of intermediate-depth seismicity located beneath the Eastern Cordillera of Colombia as due to a massive dehydration and eclogitization of a thickened oceanic crust. We relate the flat subducting geometry to the entrance at the trench at ca. 10 Ma of a thick - buoyant oceanic crust, likely a volcanic ridge, producing a high coupling with the overriding plate. Sub-horizontal plate subduction is consistent with the abrupt disappearance of volcanism in the Andes of South America at latitudes > 5°N.

Journal ArticleDOI
TL;DR: In this paper, an analysis of continuous water level response to Earth tides in monitoring wells provides a method to measure the in situ hydrogeologic properties of fault zones, particularly in low-permeability fractured bedrock formations.
Abstract: Hydrogeologic properties of fault zones are critical to faulting processes; however, they are not well understood and difficult to measure in situ, particularly in low-permeability fractured bedrock formations. Analysis of continuous water level response to Earth tides in monitoring wells provides a method to measure the in situ hydrogeologic properties. We utilize four monitoring wells within the San Andreas Fault zone near Logan Quarry to study the fault zone hydrogeologic architecture by measuring the water level tidal response. The specific storage and permeability inferred from the tidal response suggest that there is a difference in properties at different distances from the fault. The sites closer to the fault have higher specific storage and higher permeability than farther from the fault. This difference of properties might be related to the fault zone fracture distribution decreasing away from the fault. Although permeability channels near faults have been documented before, the difference in specific storage near the fault is a new observation. The inferred compliance contrast is consistent with prior estimates of elastic moduli in the near-fault environment, but the direct measurements are new. The combination of measured permeability and storage yields a diffusivity of about 10 m/s at all the sites both near and far from the fault as a result of the competing effects of permeability and specific storage. This uniform diffusivity structure suggests that the permeability contrast might not efficiently trap fluids during the interseismic period.

Journal ArticleDOI
TL;DR: In this article, the authors integrate current questions in rock physics on the effects and behavior of very small melt fractions (! 1%) in the asthenosphere, and show that a small melt fraction forming a connected network has a large effect on the diffusion creep shear viscosity, as well as in the anelastic behavior.
Abstract: This paper integrates current questions in rock physics on the effects and behavior of very small melt fractions (! 1%) in the asthenosphere. In experiment and theory, it has been shown that a very small melt fraction forming a connected network has a large effect on the diffusion creep shear viscosity, as well as in the anelastic behavior. Because small concentrations of volatiles, particularly H2O and CO2, significantly lower the peridotite solidus, a small melt fraction is expected in the asthenosphere. Even with connected networks, permeability will be low and surface tension will generate a strong force resisting complete draining of small melt fractions. The anelastic reduction of shear velocity due to melt could cause a \" 5% shear velocity contrast across the solidus, consistent with the contrast measured on features in the shallow suboceanic upper mantle that are often interpreted as the lithosphere-asthenosphere boundary.

Journal ArticleDOI
TL;DR: In this article, the causes of ground deformation at Aluto, a restless silicic volcano located in the Main Ethiopian Rift (MER), were investigated using InSAR data.
Abstract: Restless silicic calderas present major geological hazards, and yet many also host significant untapped geothermal resources. In East Africa, this poses a major challenge, although the calderas are largely unmonitored their geothermal resources could provide substantial economic benefits to the region. Understanding what causes unrest at these volcanoes is vital for weighing up the opportunities against the potential risks. Here we bring together new field and remote sensing observations to evaluate causes of ground deformation at Aluto, a restless silicic volcano located in the Main Ethiopian Rift (MER). Interferometric Synthetic Aperture Radar (InSAR) data reveal the temporal and spatial characteristics of a ground deformation episode that took place between 2008 and 2010. Deformation time series reveal pulses of accelerating uplift that transition to gradual long-term subsidence, and analytical models support inflation source depths of ∼5 km. Gases escaping along the major fault zone of Aluto show high CO2 flux, and a clear magmatic carbon signature (CO2-δ13C of −4.2‰ to −4.5‰). This provides compelling evidence that the magmatic and hydrothermal reservoirs of the complex are physically connected. We suggest that a coupled magmatic-hydrothermal system can explain the uplift-subsidence signals. We hypothesize that magmatic fluid injection and/or intrusion in the cap of the magmatic reservoir drives edifice-wide inflation while subsequent deflation is related to magmatic degassing and depressurization of the hydrothermal system. These new constraints on the plumbing of Aluto yield important insights into the behavior of rift volcanic systems and will be crucial for interpreting future patterns of unrest.

Journal ArticleDOI
TL;DR: In this paper, a model of multilithology mantle melting was developed to track the thermal evolution of the mantle during isentropic decompression melting, and the authors explored the controls on the temperature at which primary melts begin to crystallize, as a function of source composition and the depth from which the magmas are derived.
Abstract: New crystallization temperatures for four eruptions from the Northern Volcanic Zone of Iceland are determined using olivine-spinel aluminum exchange thermometry. Differences in the olivine crystallization temperatures between these eruptions are consistent with variable extents of cooling during fractional crystallization. However, the crystallization temperatures for Iceland are systematically offset to higher temperatures than equivalent olivine-spinel aluminum exchange crystallization temperatures published for MORB, an effect that cannot be explained by fractional crystallization. The highest observed crystallization temperature in Iceland is 1399 ± 20°C. In order to convert crystallization temperatures to mantle potential temperature, we developed a model of multilithology mantle melting that tracks the thermal evolution of the mantle during isentropic decompression melting. With this model, we explore the controls on the temperature at which primary melts begin to crystallize, as a function of source composition and the depth from which the magmas are derived. Large differences (200°C) in crystallization temperature can be generated by variations in mantle lithology, a magma's inferred depth of origin, and its thermal history. Combining this model with independent constraints on the magma volume flux and the effect of lithological heterogeneity on melt production, restricted regions of potential temperature-lithology space can be identified as consistent with the observed crystallization temperatures. Mantle potential temperature is constrained to be 1480^(+37)_(-30)°C for Iceland and 1318^(+44)_(-32)°C for MORB.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the correlation between the LIPs and LLSVPs using nonparametric statistical tests, updated plate reconstructions, and a large number of alternative definitions of LPs based on seismic tomography.
Abstract: Absolute reconstructions of large igneous provinces (LIPs) for the past 300 Ma reveal a remarkable spatial pattern suggesting that almost all LIPs have erupted over the margins of the two large-scale structures in the Earth's lower mantle commonly referred to as the Large Low Shear-wave Velocity Provinces (LLSVPs). This correlation suggests that mantle plumes that have triggered LIP eruptions rose from the margins of LLSVPs, implying long-term stability of these structures and suggesting that they may be chemically distinct from the bulk of the mantle. Yet, some researchers consider the LLSVPs to be purely thermal upwellings, arguing that the observed distribution of LIPs can be explained by plumes randomly forming over the entire areas of LLSVPs. Here we examine the correlation between the LIPs and LLSVPs using nonparametric statistical tests, updated plate reconstructions, and a large number of alternative definitions of LLSVPs based on seismic tomography. We show that probability models assuming plume sources originating at the margins of LLSVPs adequately explain the observed distribution of reconstructed LIPs. In contrast, we find strong evidence against the models seeking to link LIPs with plumes randomly forming over the entire LLSVP areas. However, the hypothesis proposing that the correlation can be explained by plumes randomly forming over a larger area of slower-than-average shear wave velocities in the lowermost mantle cannot be ruled out formally. Our analysis suggests that there is no statistically sound reason for questioning the hypothesis that the LIPs correlate with the margins of LLSVP globally.

Journal ArticleDOI
TL;DR: In this article, the authors explore the hypothesis that the large low shear-wave velocity provinces (LLSVPs) are compositionally subdivided into two domains: a primordial bottom domain near the core-mantle boundary and a basaltic shallow domain that extends from 1100 to 2300 km depth.
Abstract: The large low shear-wave velocity provinces (LLSVP) are thermochemical anomalies in the deep Earth's mantle, thousands of km wide and ∼1800 km high. This study explores the hypothesis that the LLSVPs are compositionally subdivided into two domains: a primordial bottom domain near the core-mantle boundary and a basaltic shallow domain that extends from 1100 to 2300 km depth. This hypothesis reconciles published observations in that it predicts that the two domains have different physical properties (bulk-sound versus shear-wave speed versus density anomalies), the transition in seismic velocities separating them is abrupt, and both domains remain seismically distinct from the ambient mantle. We here report underside reflections from the top of the LLSVP shallow domain, supporting a compositional origin. By exploring a suite of two-dimensional geodynamic models, we constrain the conditions under which well-separated “double-layered” piles with realistic geometry can persist for billions of years. Results show that long-term separation requires density differences of ∼100 kg/m3 between LLSVP materials, providing a constraint for origin and composition. The models further predict short-lived “secondary” plumelets to rise from LLSVP roofs and to entrain basaltic material that has evolved in the lower mantle. Long-lived, vigorous “primary” plumes instead rise from LLSVP margins and entrain a mix of materials, including small fractions of primordial material. These predictions are consistent with the locations of hot spots relative to LLSVPs, and address the geochemical and geochronological record of (oceanic) hot spot volcanism. The study of large-scale heterogeneity within LLSVPs has important implications for our understanding of the evolution and composition of the mantle.

Journal ArticleDOI
TL;DR: In this paper, a new plate tectonic reconstruction of the opening of the Western Somali Basin during the breakup of East and West Gondwana is presented. But the model is constrained by a new comprehensive set of spreading lineaments, detected in this heavily sedimented basin using a novel technique based on directional derivatives of free-air gravity anomalies.
Abstract: Accurate reconstructions of the dispersal of supercontinent blocks are essential for testing continental breakup models. Here, we provide a new plate tectonic reconstruction of the opening of the Western Somali Basin during the breakup of East and West Gondwana. The model is constrained by a new comprehensive set of spreading lineaments, detected in this heavily sedimented basin using a novel technique based on directional derivatives of free-air gravity anomalies. Vertical gravity gradient and free-air gravity anomaly maps also enable the detection of extinct mid-ocean ridge segments, which can be directly compared to several previous ocean magnetic anomaly interpretations of the Western Somali Basin. The best matching interpretations have basin symmetry around the M0 anomaly; these are then used to temporally constrain our plate tectonic reconstruction. The reconstruction supports a tight fit for Gondwana fragments prior to breakup, and predicts that the continent-ocean transform margin lies along the Rovuma Basin, not along the Davie Fracture Zone (DFZ) as commonly thought. According to our reconstruction, the DFZ represents a major ocean-ocean fracture zone formed by the coalescence of several smaller fracture zones during evolving plate motions as Madagascar drifted southwards, and offshore Tanzania is an obliquely rifted, rather than transform, margin. New seismic reflection evidence for oceanic crust inboard of the DFZ strongly supports these conclusions. Our results provide important new constraints on the still enigmatic driving mechanism of continental rifting, the nature of the lithosphere in the Western Somali Basin, and its resource potential.

Journal ArticleDOI
TL;DR: In this article, the authors combined multi-channel seismic reflection and gravity modeling to investigate the crustal structure of the northwestern South China Sea margin and found that the postrift magmatism is well developed and more active in the Xisha Trough and farther southeast than on the northwestern continental margin of the south China Sea; and the magmatic intrusion/extrusion was relatively active during the rifting of Xisha trough and the adjacent Northwest sub-basin.
Abstract: Combining multi-channel seismic reflection and gravity modeling, this study has investigated the crustal structure of the northwestern South China Sea margin. These data constrain a hyper-extended crustal area bounded by basin-bounding faults corresponding to an aborted rift below the Xisha Trough with a subparallel fossil ridge in the adjacent Northwest Sub-basin. The thinnest crust is located in the Xisha Trough, where it is remnant lower crust with a thickness of less than 3 km. Gravity modeling also revealed a hyper-extended crust across the Xisha Trough. The postrift magmatism is well developed and more active in the Xisha Trough and farther southeast than on the northwestern continental margin of the South China Sea; and the magmatic intrusion/extrusion was relatively active during the rifting of Xisha Trough and the Northwest Sub-basin. A narrow continent-ocean transition zone with a width of ∼65 km bounded seaward by a volcanic buried seamount is characterized by crustal thinning, rift depression, low gravity anomaly and the termination of the break-up unconformity seismic reflection. The aborted rift near the continental margin means that there may be no obvious detachment fault like that in the Iberia-Newfoundland type margin. The symmetric rift, extreme hyper-extended continental crust and hotter mantle materials indicate that continental crust underwent stretching phase (pure-shear deformation), thinning phase and breakup followed by onset of seafloor spreading and the mantle-lithosphere may break up before crustal-necking in the northwestern South China Sea margin.

Journal ArticleDOI
TL;DR: In this article, a long-term monitoring over one year revealed high temporal variability of gas emissions at a cold seep in 1250 m water depth offshore Vancouver Island, British Columbia.
Abstract: Long-term monitoring over one year revealed high temporal variability of gas emissions at a cold seep in 1250 m water depth offshore Vancouver Island, British Columbia. Data from the North East Pacific Time series Underwater Networked Experiment observatory operated by Ocean Networks Canada were used. The site is equipped with a 260 kHz Imagenex sonar collecting hourly data, conductivity-temperature-depth sensors, bottom pressure recorders, current meter, and an ocean bottom seismograph. This enables correlation of the data and analyzing trigger mechanisms and regulating criteria of gas discharge activity. Three periods of gas emission activity were observed: (a) short activity phases of few hours lasting several months, (b) alternating activity and inactivity of up to several day-long phases each, and (c) a period of several weeks of permanent activity. These periods can neither be explained by oceanographic conditions nor initiated by earthquakes. However, we found a clear correlation of gas emission with bottom pressure changes controlled by tides. Gas bubbles start emanating during decreasing tidal pressure. Tidally induced pressure changes also influence the subbottom fluid system by shifting the methane solubility resulting in exsolution of gas during falling tides. These pressure changes affect the equilibrium of forces allowing free gas in sediments to emanate into the water column at decreased hydrostatic load. We propose a model for the fluid system at the seep, fueled by a constant sub-surface methane flux and a frequent tidally controlled discharge of gas bubbles into the ocean, transferable to other gas emission sites in the world's oceans.

Journal ArticleDOI
TL;DR: In this article, USArray Transportable Array (TA) measurements at TA stations in eastern North America and compare the measured fast directions with indicators such as absolute plate motion, surface geology, and magnetic lineations.
Abstract: Seismic anisotropy in the upper mantle beneath continental interiors is generally complicated, with contributions from both the lithosphere and the asthenosphere. Previous studies of SKS splitting beneath the eastern United States have yielded evidence for complex and laterally variable anisotropy, but until the recent arrival of the USArray Transportable Array (TA) the station coverage has been sparse. Here we present SKS splitting measurements at TA stations in eastern North America and compare the measured fast directions with indicators such as absolute plate motion, surface geology, and magnetic lineations. We find few correlations between fast directions and absolute plate motion, except in the northeastern U.S. and southern Canada, where some stations exhibit variations in apparent splitting with backazimuth that would suggest multiple layers of anisotropy. A region of the southeastern U.S. is dominated by null SKS arrivals over a range of backazimuths, consistent with previous work. We document a pattern of fast directions parallel to the Appalachian mountain chain, suggesting a contribution from lithospheric deformation associated with Appalachian orogenesis. Overall, our measurements suggest that upper mantle anisotropy beneath the eastern United States is complex, with likely contributions from both asthenospheric and lithospheric anisotropy in many regions.

Journal ArticleDOI
TL;DR: In this paper, the authors present detailed petrology, geochronology, major and trace element, Sr-Nd-Hf-O isotope data for the Early Cretaceous (∼122 Ma) dioritic rocks in the Bizha area in southern Qiangtang, Tibet.
Abstract: Deciphering the petrogenesis of andesitic/dioritic rocks is fundamental to understanding the formation of the continental crust. Here we present detailed petrology, geochronology, major and trace element, Sr–Nd–Hf–O isotope data for the Early Cretaceous (∼122 Ma) dioritic rocks in the Bizha area in southern Qiangtang, Tibet. The dioritic rocks are characterized by large ion lithophile elements, Pb, and light rare earth elements but depletion of high field strength elements with slightly enriched and variable eNd(t) values of −0.01 to −3.31 and initial 87Sr/86Sr isotopic ratios of 0.7053–0.7062. They also have variable magmatic zircon Hf-O isotope compositions (eHf(t) = −5.3 to +3.6 and δ18O = +7.3 to +9.5 ‰). Combined with contemporary andesitic lavas in southern Qiangtang, we suggest that the intermediate magmatic rocks in this area were most probably derived by partial melting of a subduction melange, which is a mixture of mid-oceanic ridge basalts (MORBs), sediments, and mantle wedge peridotites, formed along the interface between the subducted slab and the overlying mantle wedge in a subduction channel before ∼124 Ma. The melange diapir melting was triggered by the asthenospheric upwelling and hot corner flow caused by roll-back of the northward subducted Bangong-Nujiang oceanic slab during the Early Cretaceous. The Early Cretaceous intermediate magmatic rocks in southern Qiangtang have an overall continental crust-like andesitic composition. Therefore, partial melting of melange provides an important support for the generation of andesitic magmas in continental arcs and the “andesite model” for crustal growth.

Journal ArticleDOI
TL;DR: A wide variety of marine mineral deposits were recovered from 750 to 1400 m water depths on Galicia Bank, Iberian margin this paper, including carbonate fluorapatite phosphorite slabs and nodules.
Abstract: A wide variety of marine mineral deposits were recovered from 750 to 1400 m water depths on Galicia Bank, Iberian margin. Mineral deposits include: (1) carbonate fluorapatite phosphorite slabs and nodules that replaced limestone and preserved original protolith fabric. (2) Ferromanganese vernadite crusts with high Mn and Fe (Mn/Fe = 1) contents, and thick stratabound layers consisting mainly of Mn (up to 27% MnO) and Fe (15% Fe2O3), which impregnated and replaced the phosphorite. (3) Co-rich Mn nodules are composed of romanechite and todorokite laminae. Mn-rich layers (up to 58% MnO) contain up to 1.8% Co. (4) Goethite nodules with Fe up to 67% Fe2O3 have low Mn and trace metals. We interpret this mineralization paragenesis to be related to major changes in oceanographic and tectonic regimes. Three phosphatization generations formed hardgrounds dated by 87Sr/86Sr isotopes as late Oligocene, early Miocene, and latest early Miocene. During the latest early Miocene, the hardground was fractured and breached due to regional intraplate tectonism, which was coeval with a widespread regional erosional unconformity. The stratabound layers and Co-rich manganese nodules were derived from low-temperature geothermally driven hydrothermal fluids, with fluid conduits along reactivated faults. During middle and late Miocene, the introduction of vigorous deep water flow from the Arctic generated growth of hydrogenetic ferromanganese crusts. Finally, growth of diagenetic Fe-rich nodules (late Pliocene) was promoted by the introduction of hypersaline Mediterranean Outflow Water into the Atlantic Ocean.

Journal ArticleDOI
TL;DR: In this paper, a three-axis electric field receiver is designed to be towed behind a marine electromagnetic transmitter for the purpose of mapping the electrical resistivity in the upper 1000 m of seafloor geology.
Abstract: We have developed a three-axis electric field receiver designed to be towed behind a marine electromagnetic transmitter for the purpose of mapping the electrical resistivity in the upper 1000 m of seafloor geology. By careful adjustment of buoyancy and the use of real-time monitoring of depth and altitude, we are able to deep-tow multiple receivers on arrays up to 1200 m long within 50 m of the seafloor, thereby obtaining good coupling to geology. The rigid body of the receiver is designed to reduce noise associated with lateral motion of flexible antennas during towing, and allows the measurement of the vertical electric field component, which modeling shows to be particularly sensitive to near-seafloor resistivity variations. The positions and orientations of the receivers are continuously measured, and realistic estimates of positioning errors can be used to build an error model for the data. During a test in the San Diego Trough, offshore California, inversions of the data were able to fit amplitude and phase of horizontal electric fields at three frequencies on three receivers to about 1% in amplitude and 1° in phase and vertical fields to about 5% in amplitude and 5° in phase. The geological target of the tests was a known cold seep and methane vent in 1000 m water depth, which inversions show to be associated with a 1 km wide resistor at a depth between 50 and 150 m below seafloor. Given the high resistivity (30 Ωm) and position within the gas hydrate stability field, we interpret this to be massive methane hydrate.

Journal ArticleDOI
TL;DR: The Pb-Sr-Nd-Hf isotopic and trace element concentration data set, combined with quantitative phase analysis by XRD Rietveld refinement, for a wide range of mafic to ultramafic rock reference materials analyzed at the Pacific Centre for Isotopic and Geochemical Research, University of British Columbia.
Abstract: Controlling the accuracy and precision of geochemical analyses requires the use of characterized reference materials with matrices similar to those of the unknown samples being analyzed. We report a comprehensive Pb-Sr-Nd-Hf isotopic and trace element concentration data set, combined with quantitative phase analysis by XRD Rietveld refinement, for a wide range of mafic to ultramafic rock reference materials analyzed at the Pacific Centre for Isotopic and Geochemical Research, University of British Columbia. The samples include a pyroxenite (NIM-P), five basalts (BHVO-2, BIR-1a, JB-3, BE-N, GSR-3), a diabase (W-2), a dolerite (DNC-1), a norite (NIM-N), and an anorthosite (AN-G); results from a leucogabbro (Stillwater) are also reported. Individual isotopic ratios determined by MC-ICP-MS and TIMS, and multielement analyses by HR-ICP-MS are reported with 4–12 complete analytical duplicates for each sample. The basaltic reference materials have coherent Sr and Nd isotopic ratios with external precision below 50 ppm (2SD) and below 100 ppm for Hf isotopes (except BIR-1a). For Pb isotopic reproducibility, several of the basalts (JB-3, BHVO-2) require acid leaching prior to dissolution. The plutonic reference materials also have coherent Sr and Nd isotopic ratios (<50 ppm), however, obtaining good reproducibility for Pb and Hf isotopic ratios is more challenging for NIM-P, NIM-N, and AN-G due to a variety of factors, including postcrystallization Pb mobility and the presence of accessory zircon. Collectively, these results form a comprehensive new database that can be used by the geochemical community for evaluating the radiogenic isotope and trace element compositions of volcanic and plutonic mafic-ultramafic rocks.

Journal ArticleDOI
TL;DR: In this article, the authors describe a fully automated interface based on a commercial horizontal pass-through 2G DC-SQUID magnetometer, which is operational at the universities of Bremen and Utrecht (Netherlands) since 1998 and 2006, respectively, while a system is currently being built at NGU Trondheim (Norway).
Abstract: Today's paleomagnetic and magnetic proxy studies involve processing of large sample collections while simultaneously demanding high quality data and high reproducibility. Here we describe a fully automated interface based on a commercial horizontal pass-through “2G” DC-SQUID magnetometer. This system is operational at the universities of Bremen (Germany) and Utrecht (Netherlands) since 1998 and 2006, respectively, while a system is currently being built at NGU Trondheim (Norway). The magnetometers are equipped with “in-line” alternating field (AF) demagnetization, a direct-current bias field coil along the coaxial AF demagnetization coil for the acquisition of anhysteretic remanent magnetization (ARM) and a long pulse-field coil for the acquisition of isothermal remanent magnetization (IRM). Samples are contained in dedicated low magnetization perspex holders that are manipulated by a pneumatic pick-and-place-unit. Upon desire samples can be measured in several positions considerably enhancing data quality in particular for magnetically weak samples. In the Bremen system, the peak of the IRM pulse fields is actively measured which reduces the discrepancy between the set field and the field that is actually applied. Techniques for quantifying and removing gyroremanent overprints and for measuring the viscosity of IRM further extend the range of applications of the system. Typically c. 300 paleomagnetic samples can be AF demagnetized per week (15 levels) in the three-position protocol. The versatility of the system is illustrated by several examples of paleomagnetic and rock magnetic data processing.

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the seismic activity along the Main Marmara Fault (MMF) below the Marmar Sea to provide insights on the recent evolution of this important regional seismic gap.
Abstract: The seismicity along the Main Marmara Fault (MMF) below the Marmara Sea is analyzed during the 2007–2012 period to provide insights on the recent evolution of this important regional seismic gap. High precision locations show that seismicity is strongly varying along strike and depth providing fine details of the fault behavior that are inaccessible from geodetic observations. The activity strongly clusters at the regions of transition between basins. The Central basin shows significant seismicity located below the shallow locking depth inferred from GPS measurements. Its b-value is low and the average seismic slip is high. All observations are consistent with a deep creep of this segment. On the contrary, the Kumburgaz basin at the center of the fault shows sparse seismicity with the hallmarks of a locked segment. In the eastern Marmara Sea, the seismicity distribution along the Princes Island segment in the Cinarcik basin, is consistent with the geodetic locking depth of 10 km and a low contribution to the regional seismic energy release. The assessment of the locked segment areas provide an estimate of the magnitude of the main forthcoming event to be about 7.3 assuming that the rupture will not enter significantly within creeping domains.