scispace - formally typeset
Search or ask a question

Showing papers in "IEEE Transactions on Wireless Communications in 2015"


Journal ArticleDOI
TL;DR: A general framework to evaluate the coverage and rate performance in mmWave cellular networks is proposed, and the results show that dense mmWave networks can achieve comparable coverage and much higher data rates than conventional UHF cellular systems, despite the presence of blockages.
Abstract: Millimeter wave (mmWave) holds promise as a carrier frequency for fifth generation cellular networks. Because mmWave signals are sensitive to blockage, prior models for cellular networks operated in the ultra high frequency (UHF) band do not apply to analyze mmWave cellular networks directly. Leveraging concepts from stochastic geometry, this paper proposes a general framework to evaluate the coverage and rate performance in mmWave cellular networks. Using a distance-dependent line-of-site (LOS) probability function, the locations of the LOS and non-LOS base stations are modeled as two independent non-homogeneous Poisson point processes, to which different path loss laws are applied. Based on the proposed framework, expressions for the signal-to-noise-and-interference ratio (SINR) and rate coverage probability are derived. The mmWave coverage and rate performance are examined as a function of the antenna geometry and base station density. The case of dense networks is further analyzed by applying a simplified system model, in which the LOS region of a user is approximated as a fixed LOS ball. The results show that dense mmWave networks can achieve comparable coverage and much higher data rates than conventional UHF cellular systems, despite the presence of blockages. The results suggest that the cell size to achieve the optimal SINR scales with the average size of the area that is LOS to a user.

1,342 citations


Journal ArticleDOI
TL;DR: In this article, a low-complexity hybrid analog/digital precoding for downlink multiuser mmWave systems is proposed, which involves a combination of analog and digital processing that is inspired by the power consumption of complete radio frequency and mixed signal hardware.
Abstract: Antenna arrays will be an important ingredient in millimeter-wave (mmWave) cellular systems. A natural application of antenna arrays is simultaneous transmission to multiple users. Unfortunately, the hardware constraints in mmWave systems make it difficult to apply conventional lower frequency multiuser MIMO precoding techniques at mmWave. This paper develops low-complexity hybrid analog/digital precoding for downlink multiuser mmWave systems. Hybrid precoding involves a combination of analog and digital processing that is inspired by the power consumption of complete radio frequency and mixed signal hardware. The proposed algorithm configures hybrid precoders at the transmitter and analog combiners at multiple receivers with a small training and feedback overhead. The performance of the proposed algorithm is analyzed in the large dimensional regime and in single-path channels. When the analog and digital precoding vectors are selected from quantized codebooks, the rate loss due to the joint quantization is characterized, and insights are given into the performance of hybrid precoding compared with analog-only beamforming solutions. Analytical and simulation results show that the proposed techniques offer higher sum rates compared with analog-only beamforming solutions, and approach the performance of the unconstrained digital beamforming with relatively small codebooks.

919 citations


Journal ArticleDOI
TL;DR: Numerical and analytical results show that the maximal EE is achieved by a massive MIMO setup wherein hundreds of antennas are deployed to serve a relatively large number of users using ZF processing.
Abstract: Assume that a multi-user multiple-input multiple-output (MIMO) system is designed from scratch to uniformly cover a given area with maximal energy efficiency (EE). What are the optimal number of antennas, active users, and transmit power? The aim of this paper is to answer this fundamental question. We consider jointly the uplink and downlink with different processing schemes at the base station and propose a new realistic power consumption model that reveals how the above parameters affect the EE. Closed-form expressions for the EE-optimal value of each parameter, when the other two are fixed, are provided for zero-forcing (ZF) processing in single-cell scenarios. These expressions prove how the parameters interact. For example, in sharp contrast to common belief, the transmit power is found to increase (not to decrease) with the number of antennas. This implies that energy-efficient systems can operate in high signal-to-noise ratio regimes in which interference-suppressing signal processing is mandatory. Numerical and analytical results show that the maximal EE is achieved by a massive MIMO setup wherein hundreds of antennas are deployed to serve a relatively large number of users using ZF processing. The numerical results show the same behavior under imperfect channel state information and in symmetric multi-cell scenarios.

707 citations


Journal ArticleDOI
TL;DR: The investigation shows that the measured channels, for both array types, allow us to achieve performance close to that in i.i.d. Rayleigh channels, and concludes that in real propagation environments the authors have characteristics that can allow for efficient use of massive MIMO.
Abstract: Massive MIMO, also known as very-large MIMO or large-scale antenna systems, is a new technique that potentially can offer large network capacities in multi-user scenarios. With a massive MIMO system, we consider the case where a base station equipped with a large number of antenna elements simultaneously serves multiple single-antenna users in the same time-frequency resource. So far, investigations are mostly based on theoretical channels with independent and identically distributed (i.i.d.) complex Gaussian coefficients, i.e., i.i.d. Rayleigh channels. Here, we investigate how massive MIMO performs in channels measured in real propagation environments. Channel measurements were performed at 2.6 GHz using a virtual uniform linear array (ULA), which has a physically large aperture, and a practical uniform cylindrical array (UCA), which is more compact in size, both having 128 antenna ports. Based on measurement data, we illustrate channel behavior of massive MIMO in three representative propagation conditions, and evaluate the corresponding performance. The investigation shows that the measured channels, for both array types, allow us to achieve performance close to that in i.i.d. Rayleigh channels. It is concluded that in real propagation environments we have characteristics that can allow for efficient use of massive MIMO, i.e., the theoretical advantages of this new technology can also be harvested in real channels.

505 citations


Journal ArticleDOI
TL;DR: In this article, the authors derived closed-form expressions for the user rates and a scaling law that shows how fast the hardware imperfections can increase with $N$ while maintaining high rates.
Abstract: Massive multiple-input multiple-output (MIMO) systems are cellular networks where the base stations (BSs) are equipped with unconventionally many antennas, deployed on co-located or distributed arrays. Huge spatial degrees-of-freedom are achieved by coherent processing over these massive arrays, which provide strong signal gains, resilience to imperfect channel knowledge, and low interference. This comes at the price of more infrastructure; the hardware cost and circuit power consumption scale linearly/affinely with the number of BS antennas $N$ . Hence, the key to cost-efficient deployment of large arrays is low-cost antenna branches with low circuit power, in contrast to today's conventional expensive and power-hungry BS antenna branches. Such low-cost transceivers are prone to hardware imperfections, but it has been conjectured that the huge degrees-of-freedom would bring robustness to such imperfections. We prove this claim for a generalized uplink system with multiplicative phase-drifts, additive distortion noise, and noise amplification. Specifically, we derive closed-form expressions for the user rates and a scaling law that shows how fast the hardware imperfections can increase with $N$ while maintaining high rates. The connection between this scaling law and the power consumption of different transceiver circuits is rigorously exemplified. This reveals that one can make the circuit power increase as $\sqrt{N} $ , instead of linearly, by careful circuit-aware system design.

399 citations


Journal ArticleDOI
TL;DR: A unified multi-ray channel model in the Terahertz Band is developed based on ray tracing techniques, which incorporates the propagation models for the line-of-sight, reflected, scattered, and diffracted paths to lay out the foundation for reliable and efficient ultra-high-speed wireless communications in the (0.06-10) THz Band.
Abstract: Terahertz (0.06–10 THz) Band communication is envisioned as a key technology for satisfying the increasing demand for ultra-high-speed wireless links. In this paper, first, a unified multi-ray channel model in the THz Band is developed based on ray tracing techniques, which incorporates the propagation models for the line-of-sight, reflected, scattered, and diffracted paths. The developed theoretical model is validated with the experimental measurements (0.06–1 THz) from the literature. Then, using the developed propagation models, an in-depth analysis on the THz channel characteristics is carried out. In particular, the distance-varying and frequency-selective nature of the Terahertz channel is analyzed. Moreover, the coherence bandwidth and the significance of the delay spread are studied. Furthermore, the wideband channel capacity using flat and water-filling power allocation strategies is characterized. Additionally, the temporal broadening effects of the Terahertz channel are studied. Finally, distance-adaptive and multi-carrier transmissions are suggested to best benefit from the unique relationship between distance and bandwidth. The provided analysis lays out the foundation for reliable and efficient ultra-high-speed wireless communications in the (0.06–10) THz Band.

376 citations


Journal ArticleDOI
TL;DR: In this article, a new mathematical framework to the analysis of millimeter wave cellular networks is introduced, which considers realistic path-loss and blockage models derived from recently reported experimental data.
Abstract: In this paper, a new mathematical framework to the analysis of millimeter wave cellular networks is introduced. Its peculiarity lies in considering realistic path-loss and blockage models, which are derived from recently reported experimental data. The path-loss model accounts for different distributions of line-of-sight and non-line-of-sight propagation conditions and the blockage model includes an outage state that provides a better representation of the outage possibilities of millimeter wave communications. By modeling the locations of the base stations as points of a Poisson point process and by relying on a noise-limited approximation for typical millimeter wave network deployments, simple and exact integral as well as approximated and closed-form formulas for computing the coverage probability and the average rate are obtained. With the aid of Monte Carlo simulations, the noise-limited approximation is shown to be sufficiently accurate for typical network densities. The noise-limited approximation, however, may not be sufficiently accurate for ultra-dense network deployments and for sub-gigahertz transmission bandwidths. For these case studies, the analytical approach is generalized to take the other-cell interference into account at the cost of increasing its computational complexity. The proposed mathematical framework is applicable to cell association criteria based on the smallest path-loss and on the highest received power. It accounts for beamforming alignment errors and for multi-tier cellular network deployments. Numerical results confirm that sufficiently dense millimeter wave cellular networks are capable of outperforming micro wave cellular networks, in terms of coverage probability and average rate.

370 citations


Journal ArticleDOI
TL;DR: In this paper, the authors proposed a digital self-interference cancellation technique for full-duplex systems, which is shown to significantly mitigate the selfinterference signal as well as the associated transmitter and receiver impairments, more specifically, transceiver nonlinearities and phase noise.
Abstract: Full-duplex systems are expected to double the spectral efficiency compared to conventional half-duplex systems if the self-interference signal can be significantly mitigated. Digital cancellation is one of the lowest complexity self-interference cancellation techniques in full-duplex systems. However, its mitigation capability is very limited, mainly due to transmitter and receiver circuit's impairments (e.g., phase noise, nonlinear distortion, and quantization noise). In this paper, we propose a novel digital self-interference cancellation technique for full-duplex systems. The proposed technique is shown to significantly mitigate the self-interference signal as well as the associated transmitter and receiver impairments, more specifically, transceiver nonlinearities and phase noise. In the proposed technique, an auxiliary receiver chain is used to obtain a digital-domain copy of the transmitted Radio Frequency (RF) self-interference signal. The self-interference copy is then used in the digital-domain to cancel out both the self-interference signal and the associated transmitter impairments. Furthermore, to alleviate the receiver phase noise effect, a common oscillator is shared between the auxiliary and ordinary receiver chains. A thorough analytical and numerical analysis for the effect of the transmitter and receiver impairments on the cancellation capability of the proposed technique is presented. Finally, the overall performance is numerically investigated showing that using the proposed technique, the self-interference signal could be mitigated to $\sim$ 3 dB higher than the receiver noise floor, which results in up to 76% rate improvement compared to conventional half-duplex systems at 20 dBm transmit power values.

343 citations


Journal ArticleDOI
TL;DR: A cooperative Nash bargaining resource allocation algorithm is developed, and is shown to converge to a Pareto-optimal equilibrium for the cooperative game and the existence, uniqueness, and fairness of the solution to this game model are proved.
Abstract: Cognitive small cell networks have been envisioned as a promising technique for meeting the exponentially increasing mobile traffic demand. Recently, many technological issues pertaining to cognitive small cell networks have been studied, including resource allocation and interference mitigation, but most studies assume non-cooperative schemes or perfect channel state information (CSI). Different from the existing works, we investigate the joint uplink subchannel and power allocation problem in cognitive small cells using cooperative Nash bargaining game theory, where the cross-tier interference mitigation, minimum outage probability requirement, imperfect CSI and fairness in terms of minimum rate requirement are considered. A unified analytical framework is proposed for the optimization problem, where the near optimal cooperative bargaining resource allocation strategy is derived based on Lagrangian dual decomposition by introducing time-sharing variables and recalling the Lambert-W function. The existence, uniqueness, and fairness of the solution to this game model are proved. A cooperative Nash bargaining resource allocation algorithm is developed, and is shown to converge to a Pareto-optimal equilibrium for the cooperative game. Simulation results are provided to verify the effectiveness of the proposed cooperative game algorithm for efficient and fair resource allocation in cognitive small cell networks.

339 citations


Journal ArticleDOI
TL;DR: This paper proposes estimation of only the channel parameters of the desired links in a target cell, but those of the interference links from adjacent cells, which achieves much better performance in terms of the channel estimation accuracy and achievable rates in the presence of pilot contamination.
Abstract: Pilot contamination posts a fundamental limit on the performance of massive multiple-input–multiple-output (MIMO) antenna systems due to failure in accurate channel estimation. To address this problem, we propose estimation of only the channel parameters of the desired links in a target cell, but those of the interference links from adjacent cells. The required estimation is, nonetheless, an underdetermined system. In this paper, we show that if the propagation properties of massive MIMO systems can be exploited, it is possible to obtain an accurate estimate of the channel parameters. Our strategy is inspired by the observation that for a cellular network, the channel from user equipment to a base station is composed of only a few clustered paths in space. With a very large antenna array, signals can be observed under extremely sharp regions in space. As a result, if the signals are observed in the beam domain (using Fourier transform), the channel is approximately sparse, i.e., the channel matrix contains only a small fraction of large components, and other components are close to zero. This observation then enables channel estimation based on sparse Bayesian learning methods, where sparse channel components can be reconstructed using a small number of observations. Results illustrate that compared to conventional estimators, the proposed approach achieves much better performance in terms of the channel estimation accuracy and achievable rates in the presence of pilot contamination.

298 citations


Journal ArticleDOI
TL;DR: An accurate and tractable model is proposed to characterize the uplink SINR and rate distribution in a multi-tier HCN as a function of the association rules and power control parameters and it is shown that the optimal degree of channel inversion increases with load imbalance in the network.
Abstract: Load balancing by proactively offloading users onto small and otherwise lightly-loaded cells is critical for tapping the potential of dense heterogeneous cellular networks (HCNs). Offloading has mostly been studied for the downlink, where it is generally assumed that a user offloaded to a small cell will communicate with it on the uplink as well. The impact of coupled downlink-uplink offloading is not well understood. Uplink power control and spatial interference correlation further complicate the mathematical analysis as compared to the downlink. We propose an accurate and tractable model to characterize the uplink $\textnormal{\texttt{SINR}}$ and rate distribution in a multi-tier HCN as a function of the association rules and power control parameters. Joint uplink-downlink rate coverage is also characterized. Using the developed analysis, it is shown that the optimal degree of channel inversion (for uplink power control) increases with load imbalance in the network. In sharp contrast to the downlink, minimum path loss association is shown to be optimal for uplink rate. Moreover, with minimum path loss association and full channel inversion, uplink $\textnormal{\texttt{SIR}}$ is shown to be invariant of infrastructure density. It is further shown that a decoupled association —employing differing association strategies for uplink and downlink—leads to significant improvement in joint uplink-downlink rate coverage over the standard coupled association in HCNs.

Journal ArticleDOI
TL;DR: In this paper, a wireless communication network with a full-duplex hybrid energy and information access point and a set of wireless users with energy harvesting capabilities is considered, where the causal dependence of each user's harvesting time on the transmission time of earlier users is modeled by assuming that energy harvested in the future cannot be used for the current transmission.
Abstract: In this paper, we consider a wireless communication network with a full-duplex hybrid energy and information access point and a set of wireless users with energy harvesting capabilities. The hybrid access point (HAP) implements full-duplex through two antennas: one for broadcasting wireless energy to users in the downlink and the other for simultaneously receiving information from the users via time division multiple access (TDMA) in the uplink. Each user can continuously harvest wireless power from the HAP until it transmits, i.e., the energy causality constraint is modeled by assuming that energy harvested in the future cannot be used for the current transmission. This leads to the causal dependence of each user's harvesting time on the transmission time of earlier users, e.g., the second user scheduled to transmit can harvest more energy if the first user has longer transmission time. Under this setup, we investigate the sum-throughput maximization (STM) problem and the total-time minimization (TTM) problem for the proposed full-duplex wireless-powered communication network. For the STM problem, the optimal solution is obtained as a closed-form expression, which can be computed with linear complexity. For the TTM problem, by exploiting the properties of the coupled constraints, we propose a two-step algorithm to obtain an optimal solution. Then, low-complexity suboptimal solutions are proposed for each problem by exploiting the characteristics of the optimal solutions. Finally, simulation studies on the effect of user scheduling show that different scheduling strategies should be adopted for STM and TTM.

Journal ArticleDOI
TL;DR: Computer simulation results clearly show the proposed generalization scheme of OFDM-IM with generalized index modulation's superiority in both spectral efficiency and BER performance compared to existing works.
Abstract: Recently, orthogonal frequency division multiplexing (OFDM) with index modulation (OFDM-IM) was proposed. By selecting a fixed number of subcarriers as active subcarriers to carry constellation symbols, the indices of these active subcarriers may carry additional bits of information. In this paper, we propose two generalization schemes of OFDM-IM, named OFDM with generalized index modulation 1 (OFDM-GIM1) and OFDM-GIM2, respectively. In OFDM-GIM1, the number of active subcarriers in an OFDM subblock is no longer fixed. Dependent on the input binary string, different numbers of active subcarriers are assigned to carry constellation symbols. In OFDM-GIM2, independent index modulation is performed on the in-phase and quadrature component per subcarrier. Through such ways, a higher spectral efficiency than that of OFDM-IM may be achieved. Since both generalization schemes proposed suffer from BER performance loss in low SNR region, an interleaving technique is proposed to tackle this problem. Finally, noting that the two generalization schemes are compatible with each other, the combination of these two schemes, named OFDM-GIM3, has also been investigated. Computer simulation results clearly show our proposed scheme's superiority in both spectral efficiency and BER performance compared to existing works.

Journal ArticleDOI
TL;DR: The β-GPP is introduced and promoted, which is an intermediate class between the PPP and the GPP, as a model for wireless networks when the nodes exhibit repulsion and it is found that the fitted β- GPP can closely model the deployment of actual base stations in terms of coverage probability and other statistics.
Abstract: The spatial structure of transmitters in wireless networks plays a key role in evaluating mutual interference and, hence, performance. Although the Poisson point process (PPP) has been widely used to model the spatial configuration of wireless networks, it is not suitable for networks with repulsion. The Ginibre point process (GPP) is one of the main examples of determinantal point processes that can be used to model random phenomena where repulsion is observed. Considering the accuracy, tractability, and practicability tradeoffs, we introduce and promote the $\beta$ -GPP, which is an intermediate class between the PPP and the GPP, as a model for wireless networks when the nodes exhibit repulsion. To show that the model leads to analytically tractable results in several cases of interest, we derive the mean and variance of the interference using two different approaches: the Palm measure approach and the reduced second-moment approach, and then provide approximations of the interference distribution by three known probability density functions. In addition, to show that the model is relevant for cellular systems, we derive the coverage probability of a typical user and find that the fitted $\beta$ -GPP can closely model the deployment of actual base stations in terms of coverage probability and other statistics.

Journal ArticleDOI
Li You1, Xiqi Gao1, Xiang-Gen Xia2, Ni Ma3, Yan Peng3 
TL;DR: In this paper, the authors proposed a pilot reuse (PR) in single cell for massive multiuser multiple-input multiple-output (MIMO) transmission to reduce the pilot overhead.
Abstract: We propose pilot reuse (PR) in single cell for massive multiuser multiple-input multiple-output (MIMO) transmission to reduce the pilot overhead. For spatially correlated Rayleigh fading channels, we establish a relationship between channel spatial correlations and channel power angle spectrum when the base station antenna number tends to infinity. With this channel model, we show that sum mean square error (MSE) of channel estimation can be minimized provided that channel angle of arrival intervals of the user terminals reusing the pilots are non-overlapping, which shows feasibility of PR over spatially correlated massive MIMO channels with constrained channel angular spreads. Since channel estimation performance might degrade due to PR, we also develop the closed-form robust multiuser uplink receiver and downlink precoder that minimize sum MSE of signal detection, and reveal a duality between them. Subsequently, we investigate pilot scheduling, which determines the PR pattern, under two minimum MSE related criteria, and propose a low complexity pilot scheduling algorithm, which relies on the channel statistics only. Simulation results show that the proposed PR scheme provides significant performance gains over the conventional orthogonal training scheme in terms of net spectral efficiency.

Journal ArticleDOI
TL;DR: Compared to the local execution and the remote execution, the collaborative task execution can significantly save the energy consumption on the mobile device, prolonging its battery life and applying the LARAC algorithm to solving the optimization problem approximately, which has lower complexity than the enumeration algorithm.
Abstract: This paper investigates collaborative task execution between a mobile device and a cloud clone for mobile applications under a stochastic wireless channel. A mobile application is modeled as a sequence of tasks that can be executed on the mobile device or on the cloud clone. We aim to minimize the energy consumption on the mobile device while meeting a time deadline, by strategically offloading tasks to the cloud. We formulate the collaborative task execution as a constrained shortest path problem. We derive a one-climb policy by characterizing the optimal solution and then propose an enumeration algorithm for the collaborative task execution in polynomial time. Further, we apply the LARAC algorithm to solving the optimization problem approximately, which has lower complexity than the enumeration algorithm. Simulation results show that the approximate solution of the LARAC algorithm is close to the optimal solution of the enumeration algorithm. In addition, we consider a probabilistic time deadline, which is transformed to hard deadline by Markov inequality. Moreover, compared to the local execution and the remote execution, the collaborative task execution can significantly save the energy consumption on the mobile device, prolonging its battery life.

Journal ArticleDOI
TL;DR: This paper addresses the problem of energy-efficient resource allocation in the downlink of a cellular orthogonal frequency division multiple access system and shows that the maximization of the energy efficiency is approximately equivalent to the maximizations of the spectral efficiency for small values of the maximum transmit power.
Abstract: This paper addresses the problem of energy-efficient resource allocation in the downlink of a cellular orthogonal frequency division multiple access system. Three definitions of energy efficiency are considered for system design, accounting for both the radiated and the circuit power. User scheduling and power allocation are optimized across a cluster of coordinated base stations with a constraint on the maximum transmit power (either per subcarrier or per base station). The asymptotic noise-limited regime is discussed as a special case. Results show that the maximization of the energy efficiency is approximately equivalent to the maximization of the spectral efficiency for small values of the maximum transmit power, while there is a wide range of values of the maximum transmit power for which a moderate reduction of the data rate provides large savings in terms of dissipated energy. In addition, the performance gap among the considered resource allocation strategies is reduced as the out-of-cluster interference increases.

Journal ArticleDOI
TL;DR: This paper proposes a directional cell discovery procedure where base stations periodically transmit synchronization signals, potentially in time-varying random directions, to scan the angular space and reveals two key findings: 1) digital beamforming can significantly outperform analog beamforming even whendigital beamforming uses very low quantization to compensate for the additional power requirements and 2) omnidirectional transmissions of the synchronization signals from the base station generally outperform random directional scanning.
Abstract: The acute disparity between increasing bandwidth demand and available spectrum has brought millimeter wave (mmWave) bands to the forefront of candidate solutions for the next-generation cellular networks. Highly directional transmissions are essential for cellular communication in these frequencies to compensate for higher isotropic path loss. This reliance on directional beamforming, however, complicates initial cell search since mobiles and base stations must jointly search over a potentially large angular directional space to locate a suitable path to initiate communication. To address this problem, this paper proposes a directional cell discovery procedure where base stations periodically transmit synchronization signals, potentially in time-varying random directions, to scan the angular space. Detectors for these signals are derived based on a Generalized Likelihood Ratio Test (GLRT) under various signal and receiver assumptions. The detectors are then simulated under realistic design parameters and channels based on actual experimental measurements at 28 GHz in New York City. The study reveals two key findings: 1) digital beamforming can significantly outperform analog beamforming even when digital beamforming uses very low quantization to compensate for the additional power requirements and 2) omnidirectional transmissions of the synchronization signals from the base station generally outperform random directional scanning.

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a joint downlink (DL) and UL MU-AP association and beamforming design to coordinate interference in the C-RAN for energy minimization, a problem which is shown to be NP hard.
Abstract: The cloud radio access network (C-RAN) concept, in which densely deployed access points (APs) are empowered by cloud computing to cooperatively support mobile users (MUs), to improve mobile data rates, has been recently proposed. However, the high density of active APs results in severe interference and also inefficient energy consumption. Moreover, the growing popularity of highly interactive applications with stringent uplink (UL) requirements, e.g., network gaming and real-time broadcasting by wireless users, means that the UL transmission is becoming more crucial and requires special attention. Therefore in this paper, we propose a joint downlink (DL) and UL MU-AP association and beamforming design to coordinate interference in the C-RAN for energy minimization, a problem which is shown to be NP hard. Due to the new consideration of UL transmission, it is shown that the two state-of-the-art approaches for finding computationally efficient solutions of joint MU-AP association and beamforming considering only the DL, i.e., group-sparse optimization and relaxed-integer programming, cannot be modified in a straightforward way to solve our problem. Leveraging on the celebrated UL-DL duality result, we show that by establishing a virtual DL transmission for the original UL transmission, the joint DL and UL optimization problem can be converted to an equivalent DL problem in C-RAN with two inter-related subproblems for the original and virtual DL transmissions, respectively. Based on this transformation, two efficient algorithms for joint DL and UL MU-AP association and beamforming design are proposed, whose performances are evaluated and compared with other benchmarking schemes through extensive simulations.

Journal ArticleDOI
TL;DR: This paper proposes a closed-form solution for 3-D localization using AOAs that can handle the presence of sensor position errors, achieves asymptotically the CRLB performance, and maintains a bias level close to the maximum-likelihood estimator.
Abstract: Locating a signal source using angles of arrival (AOAs) in a wireless sensor network is attractive because it does not require synchronization of the distributed receivers as in the time-based localization. A challenge for AOA positioning is that the solution tends to have a large amount of bias compared with the maximum-likelihood estimator when using the computationally attractive pseudolinear formulation. AOA localization has been well studied for the 2-D situation, and relatively few developments are for the more practical 3-D scenario. This paper proposes a closed-form solution for 3-D localization using AOAs that can handle the presence of sensor position errors, achieves asymptotically the CRLB performance, and maintains a bias level close to the maximum-likelihood estimator. Theoretical analysis and simulation studies corroborate the performance of the proposed estimator.

Journal ArticleDOI
He Chen1, Yonghui Li1, Yunxiang Jiang, Yuanye Ma1, Branka Vucetic1 
TL;DR: Simulation results show that the proposed game-theoretical approach can achieve a near-optimal network-wide performance on average, especially for the scenarios with relatively low and moderate interference.
Abstract: In this paper, we consider simultaneous wireless information and power transfer (SWIPT) in relay interference channels, where multiple source-destination pairs communicate through their dedicated energy harvesting relays. Each relay needs to split its received signal from sources into two streams: one for information forwarding and the other for energy harvesting. We develop a distributed power splitting framework using game theory to derive a profile of power splitting ratios for all relays that can achieve a good network-wide performance. Specifically, non-cooperative games are respectively formulated for pure amplify-and-forward (AF) and decode-and-forward (DF) networks, in which each link is modeled as a strategic player who aims to maximize its own achievable rate. The existence and uniqueness for the Nash equilibriums (NEs) of the formulated games are analyzed and a distributed algorithm with provable convergence to achieve the NEs is also developed. Subsequently, the developed framework is extended to the more general network setting with mixed AF and DF relays. All the theoretical analyses are validated by extensive numerical results. Simulation results show that the proposed game-theoretical approach can achieve a near-optimal network-wide performance on average, especially for the scenarios with relatively low and moderate interference.

Journal ArticleDOI
TL;DR: In this article, a frame-based precoding problem is optimally solved using the principles of physical layer multicasting to multiple co-channel groups under per-antenna constraints, and a novel optimization problem that aims at maximizing the system sum rate under individual power constraints is proposed.
Abstract: The present work focuses on the forward link of a broadband multibeam satellite system that aggressively reuses the user link frequency resources. Two fundamental practical challenges, namely the need to frame multiple users per transmission and the per-antenna transmit power limitations, are addressed. To this end, the so-called frame-based precoding problem is optimally solved using the principles of physical layer multicasting to multiple co-channel groups under per-antenna constraints. In this context, a novel optimization problem that aims at maximizing the system sum rate under individual power constraints is proposed. Added to that, the formulation is further extended to include availability constraints. As a result, the high gains of the sum rate optimal design are traded off to satisfy the stringent availability requirements of satellite systems. Moreover, the throughput maximization with a granular spectral efficiency versus SINR function, is formulated and solved. Finally, a multicast-aware user scheduling policy, based on the channel state information, is developed. Thus, substantial multiuser diversity gains are gleaned. Numerical results over a realistic simulation environment exhibit as much as 30% gains over conventional systems, even for 7 users per frame, without modifying the framing structure of legacy communication standards.

Journal ArticleDOI
TL;DR: This paper considers a basic MIMO information-energy broadcast system, and proposes global optimal solutions to the secrecy rate maximization (SRM) problem in the single- stream case and a specific full-stream case and proposes inexact block coordinate descent (IBCD) algorithm to tackle the SRM problem of general case with arbitrary number of streams.
Abstract: This paper considers a basic MIMO information-energy broadcast system, where a multi-antenna transmitter transmits information and energy simultaneously to a multi-antenna information receiver and a dual-functional multi-antenna energy receiver which is also capable of decoding information. Due to the open nature of wireless medium and the dual purpose of information and energy transmission, secure information transmission while ensuring efficient energy harvesting is a critical issue for such a broadcast system. Providing that physical layer security techniques are adopted for secure transmission, we study beamforming design to maximize the achievable secrecy rate subject to a total power constraint and an energy harvesting constraint. First, based on semidefinite relaxation, we propose global optimal solutions to the secrecy rate maximization (SRM) problem in the single-stream case and a specific full-stream case. Then, we propose inexact block coordinate descent (IBCD) algorithm to tackle the SRM problem of general case with arbitrary number of streams. We prove that the IBCD algorithm can monotonically converge to a Karush-Kuhn-Tucker (KKT) solution to the SRM problem. Furthermore, we extend the IBCD algorithm to the joint beamforming and artificial noise design problem. Finally, simulations are performed to validate the effectiveness of the proposed beamforming algorithms.

Journal ArticleDOI
TL;DR: The optimal channel training sequences and a Karhunen-Loeve transform followed by entropy coded scalar quantization codebook are proposed to optimize the achievable rates, which achieves dimensionality-reduction channel estimation without channel pre-projection, and higher throughput in general, though at higher computational complexity.
Abstract: It is well known that the performance of frequency-division-duplex (FDD) massive MIMO systems with i.i.d. channels is disappointing compared with that of time-division-duplex (TDD) systems, due to the prohibitively large overhead for acquiring channel state information at the transmitter (CSIT). In this paper, we investigate the achievable rates of FDD massive MIMO systems with spatially correlated channels, considering the CSIT acquisition dimensionality loss, the imperfection of CSIT and the regularized-zero-forcing linear precoder. The achievable rates are optimized by judiciously designing the downlink channel training sequences and user CSIT feedback codebooks, exploiting the multiuser spatial channel correlation. We compare our achievable rates with TDD massive MIMO systems, i.i.d. FDD systems, and the joint spatial division and multiplexing (JSDM) scheme, by deriving the deterministic equivalents of the achievable rates, based on the one-ring model and the Laplacian model. It is shown that, based on the proposed eigenspace channel estimation schemes, the rate-gap between FDD systems and TDD systems is significantly narrowed, even approached under moderate number of base station antennas. Compared to the JSDM scheme, our proposal achieves dimensionality-reduction channel estimation without channel pre-projection, and higher throughput for moderate number of antennas and moderate to large channel coherence block length, though at higher computational complexity.

Journal ArticleDOI
TL;DR: This work considers two distinct operation modes, namely, when the phase noise processes at the M BS antennas are identical and when they are independent (nonsynchronous operation), and derives a lower bound on the sum-capacity, and compares their performance.
Abstract: Multiuser multiple-input–multiple-output (MIMO) cellular systems with an excess of base station (BS) antennas (Massive MIMO) offer unprecedented multiplexing gains and radiated energy efficiency. Oscillator phase noise is introduced in the transmitter and receiver radio frequency chains and severely degrades the performance of communication systems. We study the effect of oscillator phase noise in frequency-selective Massive MIMO systems with imperfect channel state information. In particular, we consider two distinct operation modes, namely, when the phase noise processes at the $M$ BS antennas are identical (synchronous operation) and when they are independent (nonsynchronous operation) . We analyze a linear and low-complexity time-reversal maximum-ratio combining reception strategy. For both operation modes, we derive a lower bound on the sum-capacity, and we compare their performance. Based on the derived achievable sum-rates, we show that with the proposed receive processing, an $O(\sqrt{M} ) $ array gain is achievable. Due to the phase noise drift, the estimated effective channel becomes progressively outdated. Therefore, phase noise effectively limits the length of the interval used for data transmission and the number of scheduled users. The derived achievable rates provide insights into the optimum choice of the data interval length and the number of scheduled users.

Journal ArticleDOI
TL;DR: Simulation results illustrate that the proposed GBD-based algorithm obtains the global optimal solution and the suboptimal algorithm achieves a close-to-optimal performance.
Abstract: This paper studies the resource allocation algorithm design for secure information and renewable green energy transfer to mobile receivers in distributed antenna communication systems. In particular, distributed remote radio heads (RRHs/antennas) are connected to a central processor (CP) via capacity-limited backhaul links to facilitate joint transmission. The RRHs and the CP are equipped with renewable energy harvesters and share their energies via a lossy micropower grid for improving the efficiency in conveying information and green energy to mobile receivers via radio frequency signals. The considered resource allocation algorithm design is formulated as a mixed nonconvex and combinatorial optimization problem taking into account the limited backhaul capacity and the quality-of-service requirements for simultaneous wireless information and power transfer (SWIPT). We aim at minimizing the total network transmit power when only imperfect channel state information of the wireless energy harvesting receivers, which have to be powered by the wireless network, is available at the CP. In light of the intractability of the problem, we reformulate it as an optimization problem with binary selection, which facilitates the design of an iterative resource allocation algorithm to solve the problem optimally using the generalized Bender's decomposition (GBD). Furthermore, a suboptimal algorithm is proposed to strike a balance between computational complexity and system performance. Simulation results illustrate that the proposed GBD-based algorithm obtains the global optimal solution and the suboptimal algorithm achieves a close-to-optimal performance. In addition, the distributed antenna network for SWIPT with renewable energy sharing is shown to require a lower transmit power compared with a traditional system with multiple colocated antennas.

Journal ArticleDOI
TL;DR: An interference aided energy harvesting scheme is proposed for cooperative relaying systems, where energy-constrained relays harvest energy from the received information signal and co-channel interference signals, and then use that harvested energy to forward the correctly decoded signal to the destination.
Abstract: Radio-frequency energy harvesting constitutes an effective way to prolong the lifetime of wireless networks, wean communication devices off the battery and power line, benefit the energy saving and lower the carbon footprint of wireless communications. In this paper, an interference aided energy harvesting scheme is proposed for cooperative relaying systems, where energy-constrained relays harvest energy from the received information signal and co-channel interference signals, and then use that harvested energy to forward the correctly decoded signal to the destination. The time-switching scheme (TS), in which the receiver switches between decoding information and harvesting energy, as well as the power-splitting scheme (PS), where a portion of the received power is used for energy harvesting and the remaining power is utilized for information processing, are adopted separately. Applying the proposed energy harvesting approach to a decode-and-forward relaying system with the three-terminal model, the analytical expressions of the ergodic capacity and the outage capacity are derived, and the corresponding achievable throughputs are determined. Comparative results are provided and show that PS is superior to TS at high signal-to-noise ratio (SNR) in terms of throughput, while at low SNR, TS outperforms PS. Furthermore, considering different interference power distributions with equal aggregate interference power at the relay, the corresponding system capacity relationship, i.e., the ordering of capacities, is obtained.

Journal ArticleDOI
TL;DR: This study addresses the NLOS identification and mitigation problems using multiple received signal strength (RSS) measurements from WiFi signals using several statistical features of the RSS time series, which are shown to be particularly effective.
Abstract: Indoor wireless systems often operate under non-line-of-sight (NLOS) conditions that can cause ranging errors for location-based applications. As such, these applications could benefit greatly from NLOS identification and mitigation techniques. These techniques have been primarily investigated for ultra-wide band (UWB) systems, but little attention has been paid to WiFi systems, which are far more prevalent in practice. In this study, we address the NLOS identification and mitigation problems using multiple received signal strength (RSS) measurements from WiFi signals. Key to our approach is exploiting several statistical features of the RSS time series, which are shown to be particularly effective. We develop and compare two algorithms based on machine learning and a third based on hypothesis testing to separate LOS/NLOS measurements. Extensive experiments in various indoor environments show that our techniques can distinguish between LOS/NLOS conditions with an accuracy of around 95%. Furthermore, the presented techniques improve distance estimation accuracy by 60% as compared to state-of-the-art NLOS mitigation techniques. Finally, improvements in distance estimation accuracy of 50% are achieved even without environment-specific training data, demonstrating the practicality of our approach to real world implementations.

Journal ArticleDOI
TL;DR: An iterative combinatorial auction algorithm is introduced, where the D2D users are considered bidders that compete for channel resources and the cellular network is treated as the auctioneer to improve the energy efficiency of user equipments.
Abstract: Device-to-device (D2D) communication underlaying cellular networks is expected to bring significant benefits for utilizing resources, improving user throughput, and extending the battery life of user equipment. However, the allocation of radio and power resources to D2D communication needs elaborate coordination, as D2D communication can cause interference to cellular communication. In this paper, we study joint channel and power allocation to improve the energy efficiency of user equipments. To solve the problem efficiently, we introduce an iterative combinatorial auction algorithm, where the D2D users are considered bidders that compete for channel resources and the cellular network is treated as the auctioneer. We also analyze important properties of D2D underlay communication and present numerical simulations to verify the proposed algorithm.

Journal ArticleDOI
TL;DR: A new algorithm for optimizing the traffic offloading process in D2D communications is developed and the Chernoff bound and approximated cumulative distribution function (cdf) of the offloaded traffic are derived and the validity of the bound and cdf is proven.
Abstract: Device-to-device (D2D) communication is seen as a major technology to overcome the imminent wireless capacity crunch and to enable new application services. In this paper, a novel social-aware approach for optimizing D2D communication by exploiting two layers, namely the social network layer and the physical wireless network layer, is proposed. In particular, the physical layer D2D network is captured via the users' encounter histories. Subsequently, an approach, based on the so-called Indian Buffet Process, is proposed to model the distribution of contents in the users' online social networks. Given the social relations collected by the base station, a new algorithm for optimizing the traffic offloading process in D2D communications is developed. In addition, the Chernoff bound and approximated cumulative distribution function (cdf) of the offloaded traffic are derived and the validity of the bound and cdf is proven. Simulation results based on real traces demonstrate the effectiveness of our model and show that the proposed approach can offload the network's traffic successfully.