scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Glaciology in 2014"


Journal ArticleDOI
TL;DR: The Randolph Glacier Inventory (RGI) as discussed by the authors is a collection of digital outlines of glaciers, excluding the ice sheets, developed to meet the needs of the Fifth Assessment of the Intergovernmental Panel on Climate Change for estimates of past and future mass balance.
Abstract: The Randolph Glacier Inventory (RGI) is a globally complete collection of digital outlines of glaciers, excluding the ice sheets, developed to meet the needs of the Fifth Assessment of the Intergovernmental Panel on Climate Change for estimates of past and future mass balance. The RGI was created with limited resources in a short period. Priority was given to completeness of coverage, but a limited, uniform set of attributes is attached to each of the � 198 000 glaciers in its latest version, 3.2. Satellite imagery from 1999-2010 provided most of the outlines. Their total extent is estimated as 726 800 � 34 000 km 2 . The uncertainty, about � 5%, is derived from careful single-glacier and basin-scale uncertainty estimates and comparisons with inventories that were not sources for the RGI. The main contributors to uncertainty are probably misinterpretation of seasonal snow cover and debris cover. These errors appear not to be normally distributed, and quantifying them reliably is an unsolved problem. Combined with digital elevation models, the RGI glacier outlines yield hypsometries that can be com- bined with atmospheric data or model outputs for analysis of the impacts of climatic change on glaciers. The RGI has already proved its value in the generation of significantly improved aggregate estimates of glacier mass changes and total volume, and thus actual and potential contributions to sea-level rise.

884 citations


Journal ArticleDOI
TL;DR: In this article, the authors evaluated the impact of a recent upgrade in the physics package of the regional atmospheric climate model RACMO2 on the simulated surface mass balance (SMB) of the Antarctic ice sheet.
Abstract: This study evaluates the impact of a recent upgrade in the physics package of the regional atmospheric climate model RACMO2 on the simulated surface mass balance (SMB) of the Antarctic ice sheet. The modelled SMB increases, in particular over the grounded ice sheet of East Antarctica (+44 Gt a -1 ), with a small change in West Antarctica. This mainly results from an increase in precipitation, which is explained by changes in the cloud microphysics, including a new parameter- ization for ice cloud supersaturation, and changes in large-scale circulation patterns, which alter topographically forced precipitation. The spatial changes in SMB are evaluated using 3234 in situ SMB observations and ice-balance velocities, and the temporal variability using GRACE satellite retrievals. The in situ observations and balance velocities show a clear improvement of the spatial representation of the SMB in the interior of East Antarctica, which has become considerably wetter. No improvements are seen for West Antarctica and the coastal regions. A comparison of model SMB temporal variability with GRACE satellite retrievals shows no significant change in performance.

227 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used a firn model to show that pore space was depleted in the firn layer on former ice shelves, which enabled their collapse due to hydrofracturing.
Abstract: Since the 1970s, the sudden, rapid collapse of 20% of ice shelves on the Antarctic Peninsula has led to large-scale thinning and acceleration of its tributary glaciers. The leading hypothesis for the collapse of most of these ice shelves is the process of hydrofracturing, whereby a water-filled crevasse is opened by the hydrostatic pressure acting at the crevasse tip. This process has been linked to observed atmospheric warming through the increased supply of meltwater. Importantly, the low-density firn layer near the ice-shelf surface, providing a porous medium in which meltwater can percolate and refreeze, has to be filled in with refrozen meltwater first, before hydrofracturing can occur at all. Here we build upon this notion of firn air depletion as a precursor of ice-shelf collapse, by using a firn model to show that pore space was depleted in the firn layer on former ice shelves, which enabled their collapse due to hydrofracturing. Two climate scenario runs with the same model indicate that during the 21st century most Antarctic Peninsula ice shelves, and some minor ice shelves elsewhere, are more likely to become susceptible to collapse following firn air depletion. If warming continues into the 22nd century, similar depletion will become widespread on ice shelves around East Antarctica. Our model further suggests that a projected increase in snowfall will protect the Ross and Filchner–Ronne Ice Shelves from hydrofracturing in the coming two centuries.

121 citations


Journal ArticleDOI
TL;DR: In this article, the authors assess the contribution of ice cliff backwasting to total ablation of Miage glacier, Mont Blanc massif, Italy, based on field measurements, physical melt models and mapping of ice cliffs using a high-resolution (1 m) digital elevation model.
Abstract: Continuous surface debris cover strongly reduces the ablation of glaciers, but high melt rates may occur at ice cliffs that are too steep to hold debris. This study assesses the contribution of ice- cliff backwasting to total ablation of Miage glacier, Mont Blanc massif, Italy, in 2010 and 2011, based on field measurements, physical melt models and mapping of ice cliffs using a high-resolution (1 m) digital elevation model (DEM). Short-term model calculations closely match the measured melt rates. A model sensitivity analysis indicates that the effects of cliff slope and albedo are more important for ablation than enhanced longwave incidence from sun-warmed debris or reduced turbulent fluxes at sheltered cliff bases. Analysis of the DEM indicates that ice cliffs account for at most 1.3% of the 1 m pixels in the glacier's debris-covered zone, but application of a distributed model indicates that ice cliffs account for �7.4% of total ablation. We conclude that ice cliffs make an important contribution to the ablation of debris-covered glaciers, even when their spatial extent is very small.

112 citations


Journal ArticleDOI
TL;DR: In this paper, the distribution of ice thickness for a Himalayan glacier using surface velocities, slope and ice flow law was estimated using sub-pixel correlation of Landsat TM and ETM+ imagery.
Abstract: We estimate the distribution of ice thickness for a Himalayan glacier using surface velocities, slope and the ice flow law. Surface velocities over Gangotri Glacier were estimated using sub-pixel correlation of Landsat TM and ETM+ imagery. Velocities range from similar to 14-85 m a(-1) in the accumulation region to similar to 20-30 ma(-1) near the snout. Depth profiles were calculated using the equation of laminar flow. Thickness varies from similar to 540 m in the upper reaches to similar to 50-60 m near the snout. The volume of the glacier is estimated to be 23.2 +/- 4.2 km(3).

108 citations


Journal ArticleDOI
TL;DR: In this article, the performance of five glacier melt models over a multi-decadal period was investigated in order to assess their ability to model future glacier response, including a simple degree-day model, based solely on air temperature, to more-sophisticated models, including the full shortwave radiation balance.
Abstract: We investigate the performance of five glacier melt models over a multi-decadal period in order to assess their ability to model future glacier response. The models range from a simple degree- day model, based solely on air temperature, to more-sophisticated models, including the full shortwave radiation balance. In addition to the empirical models, the performance of a physically based energy- balance (EB) model is examined. The melt models are coupled to an accumulation and a surface evolution model and applied in a distributed manner to Rhonegletscher, Switzerland, over the period 1929-2012 at hourly resolution. For calibration, seasonal mass-balance measurements (2006-12) are used. Decadal ice volume changes for six periods in the years 1929-2012 serve for model validation. Over the period 2006-12, there are almost no differences in performance between the models, except for EB, which is less consistent with observations, likely due to lack of meteorological in situ data. However, simulations over the long term (1929-2012) reveal that models which include a separate term for shortwave radiation agree best with the observed ice volume changes, indicating that their melt relationships are robust in time and thus suitable for long-term modelling, in contrast to more empirical approaches that are oversensitive to temperature fluctuations.

92 citations


Journal ArticleDOI
TL;DR: In this paper, the authors document changes in the three-dimensional ice-shelf structure from 2000 to 2012, using repeated tracks of airborne laser altimetry and ice radio-echo sounding, ICESat laser albedo and MODIS visible imagery.
Abstract: Petermann Gletscher, northwest Greenland, drains 4% of the Greenland ice sheet into Nares Strait. Its floating ice shelf retreated from 81 to 48 km in length during two large calving events in 2010 and 2012. We document changes in the three-dimensional ice-shelf structure from 2000 to 2012, using repeated tracks of airborne laser altimetry and ice radio-echo sounding, ICESat laser altimetry and MODIS visible imagery. The recent ice-shelf velocity, measured by tracking surface features between flights in 2010 and 2011, is �1.25 km a -1 , �15-30% faster than estimates made before 2010. The steady- state along-flow ice divergence represents 6.3 Gt a -1 mass loss through basal melting (�5 Gt a -1 ) and surface melting and sublimation (�1.0 Gt a -1 ). Airborne laser altimeter data reveal thinning, both along a thin central channel and on the thicker ambient ice shelf. From 2007 to 2010 the ice shelf thinned by �5 m a -1 , which represents a non-steady mass loss of �4.1 Gt a -1 . We suggest that thinning in the basal channels structurally weakened the ice shelf and may have played a role in the recent calving events.

85 citations


Journal ArticleDOI
TL;DR: In this article, the authors show that the shallow-ice approximation/shallow-shelf approximation hybrid-type Parallel Ice Sheet Model (PISM), with its recent improvements, is capable of modeling the grounding line motion in a perturbed ice-sheet-Shelf system.
Abstract: Making confident statements about the evolution of an ice-sheet-shelf system with a numerical model requires the capability to reproduce the migration of the grounding line. Here we show that the shallow-ice approximation/shallow-shelf approximation hybrid-type Parallel Ice Sheet Model (PISM), with its recent improvements, is capable of modeling the grounding line motion in a perturbed ice-sheet-shelf system. The model is set up according to the three-dimensional Marine Ice- Sheet Model Intercomparison Project (MISMIP3d), and simulations are carried out across a broad range of spatial resolutions. Using (1) a linear interpolation of the grounding line with locally interpolated basal friction and (2) an improved driving-stress computation across the grounding line, the reversibility of the grounding line (i.e. its retreat after an advance forced by a local perturbation of basal resistance) is captured by the model even at medium and low resolutions (�x > 10 km). The transient model response is qualitatively similar to that of higher-order models but reveals a higher initial sensitivity to perturbations on very short timescales. Our findings support the application of PISM to the Antarctic ice sheet from regional up to continental scales and on relatively low spatial resolutions.

81 citations


Journal ArticleDOI
TL;DR: In this paper, the influence of atmospheric/oceanic forcing and variations in fjord width on the behavior of 38 glaciers on the northern ice cap, Novaya Zemlya, was evaluated.
Abstract: Substantial ice loss has occurred in the Russian High Arctic during the past decade, predominantly on Novaya Zemlya, yet the region has been studied relatively little. Consequently, the factors forcing mass loss and the relative contribution of ice dynamics versus surface melt are poorly understood. Here we evaluate the influence of atmospheric/oceanic forcing and variations in fjord width on the behaviour of 38 glaciers on the northern ice cap, Novaya Zemlya. We compare retreat rates on land- versus marine-terminating outlets and on the Kara versus Barents Sea coasts. Between 1992 and 2010, 90% of the study glaciers retreated and retreat rates were an order of magnitude higher for marine-terminating outlets (52.1 m a–1) than for land-terminating glaciers (4.8 m a–1). We identify a post-2000 acceleration in marine-terminating glacier retreat, which corresponded closely to changes in sea-ice concentrations. Retreat rates were higher on the Barents Sea coast, which we partly attribute to lower sea-ice concentrations, but varied dramatically between individual glaciers. We use empirical data to categorize changes in along-flow fjord width, and demonstrate a significant relationship between fjord width variability and retreat rate. Results suggest that variations in fjord width exert a major influence on glacier retreat.

74 citations


Journal ArticleDOI
TL;DR: In this article, the authors evaluate the contribution of basal motion from ice deformation measurements in boreholes drilled to the bed at two sites in the western marginal zone of the Greenland ice sheet.
Abstract: Ice deformation and basal motion characterize the dynamical behavior of the Greenland ice sheet (GrIS). We evaluate the contribution of basal motion from ice deformation measurements in boreholes drilled to the bed at two sites in the western marginal zone of the GrIS. We find a sustained high amount of basal motion contribution to surface velocity of 44-73 percent in winter, and up to 90 percent in summer. Measured ice deformation rates show an unexpected variation with depth that can be explained with the help of an ice-flow model as a consequence of stress transfer from slippery to sticky areas. This effect necessitates the use of high-order ice-flow models, not only in regions of fast-flowing ice streams but in all temperate-based areas of the GrIS. The agreement between modeled and measured deformation rates confirms that the recommended values of the temperature-dependent flow rate factor A are a good choice for ice-sheet models.

72 citations


Journal ArticleDOI
TL;DR: In this article, an upward-looking ground-penetrating radar system (upGPR) was installed at the Weissfluhjoch study site (Davos, Switzerland).
Abstract: Snow stratigraphy and water percolation are key contributing factors to avalanche formation. So far, only destructive methods can provide this kind of information. Radar technology allows continuous, non-destructive scanning of the snowpack so that the temporal evolution of internal properties can be followed. We installed an upward-looking ground-penetrating radar system (upGPR) at the Weissfluhjoch study site (Davos, Switzerland). During two winter seasons (2010/11 and 2011/12) we recorded data with the aim of quantitatively determining snowpack properties and their temporal evolution. We automatically derived the snow height with an accuracy of about � 5 cm, tracked the settlement of internal layers (� 7 cm) and measured the amount of new snow (� 10 cm). Using external snow height measurements, we determined the bulk density with a mean error of 4.3% compared to manual measurements. Radar-derived snow water equivalent deviated from manual measurements by � 5%. Furthermore, we tracked the location of the dry-to-wet transition in the snowpack until water percolated to the ground. Based on the transition and an independent snow height measurement it was possible to estimate the volumetric liquid water content and its temporal evolution. Even though we need additional information to derive some of the snow properties, our results show that it is possible to quantitatively derive snow properties with upGPR.

Journal ArticleDOI
TL;DR: In this article, seismic activity in the ablation zone of the western Greenland ice sheet (GrIS) was monitored using a network of three-component seismometers, which includes a large variety of icequakes and seismic tremors that demonstrate a clear correlation with subglacial water flow.
Abstract: During summer 2011, seismic activity in the ablation zone of the western Greenland ice sheet (GrIS) was monitored using a network of three-component seismometers. The seismic record includes a large variety of icequakes and seismic tremors that demonstrate a clear correlation with subglacial water flow. We verified the existence of well-known shallow icequakes (related to surface crevasse formation), deep icequakes (located at 100-160 m depth) and narrow-banded short-term seismic tremors (tens of seconds in duration). In addition, we present previously unreported long-term tremors lasting several hours. Using attenuation of the measured tremor amplitude, we locate the epicentre of this long-term tremor to a large moulin within our study area. Between 3 and 11 Hz, our continuous seismic record is dominated by this 'moulin tremor' and shows strong correlation with the water level of the generating moulin. We argue that monitoring of icequake and glacial tremor sources bears high potential for investigating glacier hydraulics and dynamics, and is thus an ideal supplement to traditional glaciological measurements.

Journal ArticleDOI
TL;DR: In this article, the bed topography of Jakobshavn Isbrae, Greenland, and Byrd Glacier, Antarctica, derived from sounding these glaciers with high-sensitivity radars, is presented.
Abstract: This paper presents the bed topography of Jakobshavn Isbrae, Greenland, and Byrd Glacier, Antarctica, derived from sounding these glaciers with high-sensitivity radars. To understand the processes causing the speed-up and retreat of outlet glaciers, and to enable the development of next- generation ice-sheet models, we need information on bed topography and basal conditions. To this end, we performed measurements with the progressively improved Multichannel Coherent Radar Depth Sounder/Imager (MCoRDS/I). We processed the data from each antenna-array element using synthetic aperture radar algorithms to improve radar sensitivity and reduce along-track surface clutter. We then applied array and image-processing algorithms to extract the weak bed echoes buried in off-vertical scatter (cross-track surface clutter). At Jakobshavn Isbrae, we observed 2.7 km thick ice � 30 km upstream of the calving front and � 850 m thick ice at the calving front. We also observed echoes from multiple interfaces near the bed. We applied the MUSIC algorithm to the data to derive the direction of arrival of the signals. This analysis revealed that clutter is dominated by the ice surface at Jakobshavn Isbrae. At Byrd Glacier, we found � 3.62 km thick ice, as well as a subglacial trench � 3.05 km below sea level. We used ice thickness information derived from radar data in conjunction with surface elevation data to generate bed maps for these two critical glaciers. The performance of current radars must be improved further by � 15 dB to fully sound the deepest part of Byrd Glacier. Unmanned aerial systems equipped with radars that can be flown over lines spaced as close as 5 m apart in the cross-track direction to synthesize a two-dimensional aperture would be ideal for collecting fine-resolution data over glaciers like Jakobshavn near their grounding lines.

Journal ArticleDOI
TL;DR: This article assess the runoff and surface mass balance (SMB) of the Greenland ice sheet in the Nuuk region (southwest) using output of two regional climate models (RCMs) evaluated by observations.
Abstract: We assess the runoff and surface mass balance (SMB) of the Greenland ice sheet in the Nuuk region (southwest) using output of two regional climate models (RCMs) evaluated by observations. The region encompasses six glaciers that drain into Godthabsfjord. RCM data (1960-2012) are resampled to a high spatial resolution to include the narrow (relative to the native grid spacing) glacier trunks in the ice mask. Comparing RCM gridded results with automatic weather station (AWS) point measurements reveals that locally models can underestimate ablation and overestimate accumulation by up to tens of per cent. However, comparison with lake discharge indicates that modelled regional runoff totals are more accurate. Model results show that melt and runoff in the Nuuk region have doubled over the past two decades. Regional SMB attained negative values in recent high-melt years. Taking into account frontal ablation of the marine-terminating glaciers, the region lost 10-20 km 3 w.e. a -1 in 2010-12. If 2010 melting prevails during the remainder of this century, a low-end estimate of sea-level rise of 5 mm is expected by 2100 from this relatively small section (2.6%) of the ice sheet alone.

Journal ArticleDOI
TL;DR: In this article, a 3D higher-order glacier flow model for Vadret da Morteratsch, Engadin, Switzerland, was used to simulate its strong retreat since the end of the Little Ice Age (LIA) and to project its future disintegration under a warming climate.
Abstract: We use a 3-D higher-order glacier flow model for Vadret da Morteratsch, Engadin, Switzerland, to simulate its strong retreat since the end of the Little Ice Age (LIA) and to project its future disintegration under a warming climate. The flow model, coupled to a 2-D energy-balance model, is initialized with the known maximum glacier extent during the LIA and subsequently forced with mean monthly precipitation and temperature records. To correctly reproduce the observed retreat of the glacier front for the period 1864-2010, additional mass-balance perturbations are required to account for uncertainties in the initial state, the mass-balance model and climate variations not captured by the ambient meteorological records. Changes in glacier volume and area are in good agreement with additional information from historical topographic maps. Under constant 2001-10 climate conditions, a strong retreat and mass loss continue and Vadret da Morteratsch disconnects from its main tributary, Vadret Pers, before 2020. The future glacier evolution is analysed in detail to understand the timing and rate of retreat, and to assess the role of ice dynamics. Assuming a linearly increasing warming of >3°C by 2100, only isolated and largely stagnant ice patches remain at high elevation.

Journal ArticleDOI
TL;DR: This paper used 400 MHz ground-penetrating radar along the 1009 km route of the Greenland Inland Traverse from Thule to Summit during April and May of 2011, to image continuous internal reflecting horizons.
Abstract: Accumulation is a key parameter governing the mass balance of the Greenland ice sheet. Several studies have documented the spatial variability of accumulation over wide spatial scales, primarily using point data, remote sensing or modeling. Direct measurements of spatially extensive, detailed profiles of accumulation in Greenland, however, are rare. We used 400 MHz ground-penetrating radar along the 1009 km route of the Greenland Inland Traverse from Thule to Summit during April and May of 2011, to image continuous internal reflecting horizons. We dated these horizons using ice-core chemistry at each end of the traverse. Using density profiles measured along the traverse, we determined the depth to the horizons and the corresponding water-equivalent accumulation rates. The measured accumulation rates vary from ~0.1 m w.e. a–1 in the interior to ~0.7 m w.e. a–1 near the coast, and correspond broadly with existing published model results, though there are some excursions. Comparison of our recent accumulation rates with those collected along a similar route in the 1950s shows a ~10% increase in accumulation rates over the past 52 years along most of the traverse route. This implies that the increased water vapor capacity of warmer air is increasing accumulation in the interior of Greenland.

Journal ArticleDOI
TL;DR: In this article, a distributed energy-balance model was applied to the debris-covered Miage glacier, western Italian Alps, over two summer seasons, and the results showed that the continuously debris covered zone consistently provides ∼30% of total melt with the proportion increasing during cold weather.
Abstract: Distributed energy-balance melt models have rarely been applied to glaciers with extensive supraglacial debris cover. This paper describes the development of a distributed melt model and its application to the debris-covered Miage glacier, western Italian Alps, over two summer seasons. Sub-debris melt rates are calculated using an existing debris energy-balance model (DEB-Model), and melt rates for clean ice, snow and partially debris-covered ice are calculated using standard energy-balance equations. Simulated sub-debris melt rates compare well to ablation stake observations. Melt rates are highest, and most sensitive to air temperature, on areas of dirty, crevassed ice on the middle glacier. Here melt rates are highly spatially variable because the debris thickness and surface type varies markedly. Melt rates are lowest, and least sensitive to air temperature, beneath the thickest debris on the lower glacier. Debris delays and attenuates the melt signal compared to clean ice, with peak melt occurring later in the day with increasing debris thickness. The continuously debris-covered zone consistently provides ∼30% of total melt throughout the ablation season, with the proportion increasing during cold weather. Sensitivity experiments show that an increase in debris thickness of 0.035 m would offset 1°C of atmospheric warming.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that submarine melting of icebergs can be quantified using repeat digital elevation models derived from very high-resolution stereo satellite images, yielding area-averaged submarine melt rates of ~0.39 m d−1.
Abstract: Observed increases in iceberg discharge from Greenland’s marine-terminating glaciers over the past two decades have altered the freshwater flux from glacial fjords into surrounding ocean basins. Although variations in freshwater flux due to ice-sheet discharge change have been investigated on a broad scale, the distribution of the freshwater flux due to melting of calved glacier ice (i.e. icebergs) has not been examined. Logistical challenges to collecting in situ data in glacial fjords have so far prevented a detailed examination of freshwater fluxes arising from melting beneath the waterline (i.e. submarine melting). Here we demonstrate that submarine melting of icebergs can be quantified using repeat digital elevation models derived from very high-resolution stereo satellite images. Analysis of volume changes for icebergs in Sermilik Fjord, East Greenland, yield area-averaged submarine melt rates of ~0.39 m d–1. These rates are in relatively good agreement with simulated winter melt rates along the submerged portion of the Helheim Glacier terminus, providing independent validation of the applied technique. Further, the volume flux of fresh water from iceberg melting scales with surface and submerged iceberg areas, which suggests that iceberg meltwater may be an important freshwater component in fjords with high iceberg concentrations and/or expansive ice melange.

Journal ArticleDOI
TL;DR: In this paper, the authors summarize new observations of the deceleration and stick-slip motion of Whillans Ice Stream (WIS), Antarctica, and refine the location of the large sticky spots that resist motion between slip events, the locations of which are controlled by the patterns of subglacial water flow.
Abstract: We summarize new observations of the deceleration and stick–slip motion of Whillans Ice Stream (WIS), Antarctica. We refine the location of the large sticky spots that resist motion between slip events, the locations of which are controlled by the patterns of subglacial water flow. Our examination of the long-term velocity time series for the ice stream reveals that the decadal-scale deceleration is not occurring at a steady rate, but varies at the sub-decadal timescale. This unsteady deceleration modulates the temporal evolution of a broad (~50 km across) surface-elevation bulge forming at the junction between the relatively narrow upstream portion of the ice stream and broad ice plain that constitutes the downstream end of WIS. Comparison of observations from April 2003 and November 2010 reveals significant changes in the tidally modulated stick–slip cycle that regulates motion on the ice plain. We observe that the timing of slip events has become less regular in response to decreased flow speed in the upstream portions of the ice stream. The decreased regularity of slip events has reduced the release of stored elastic strain during slip events, increasing the rate of deceleration.

Journal ArticleDOI
TL;DR: In this paper, the relation between glacier hypsometry and sensitivity of mass-balance rate to changes in equilibrium line altitude (ELA) has been investigated in the Southern Patagonia Icefield.
Abstract: We study the relation between glacier hypsometry and sensitivity of mass-balance rate to changes in equilibrium line altitude (ELA). Our aim is to assess whether hypsometry can be reliably used as an estimator of the sensitivity of unmeasured glaciers to changes in ELA. We express the sensitivity of mass-balance rate to ELA, \(d\dot{B}/dELA\), as a function of accumulation-area ratio (AAR), its derivative against altitude, \(dAAR/dELA\), and mass-balance functions of ELA. We then apply the concept to 139 glaciers in the Southern Patagonia Icefield for which we derive hypsometry and AAR, and analyze the influence of hypsometry on their mass-balance rate sensitivity. We confirm that glaciers where the bulk of area is located above the ELA are the least sensitive, whereas those where the bulk of area is located below the ELA are the most sensitive. Glaciers with unimodal hypsometric curves where the peak of area fraction is around the present ELA, and glaciers with bi- or multimodal area distributions, with the ELA located approximately between the bulges, have intermediate sensitivities. We conclude that hypsometry can be used as a first order estimator of the mass-balance rate sensitivity to ELA change.

Journal ArticleDOI
TL;DR: In this paper, the sensitivity of surface mass balance and equilibrium-line altitude to climate change is assessed using an extensive dataset comprising numerous measurements of snow accumulation and snow and ice ablation made on four French glaciers over the past 16 years.
Abstract: Assessment of the sensitivity of surface mass balance and equilibrium-line altitude (ELA) to climate change is crucial for simulating the future evolution of glaciers. Such an assessment has been carried out using an extensive dataset comprising numerous measurements of snow accumulation and snow and ice ablation made on four French glaciers over the past 16 years. Winter mass balance shows a complicated pattern with respect to altitude, with no clear linear relationship. Although the ratios of winter mass balance to valley precipitation differ considerably from site to site, they are relatively constant over time. Relationships between snow/ice ablation and temperature are stable, with no link with altitude. The mean snow and ice positive degree-day (PDD) factors are 0.003 and 0.0061 m w.e. °C−1 d−1. This analysis shows that, at a given site, ablation depends mainly on the amount of snow precipitation and on cumulative PDDs. The sensitivity of annual ablation to temperature change increases almost linearly from 0.25 m w.e. °C−1 at 3500 m to 1.55 m w.e. °C−1 at 1650 m. ELA sensitivity to temperature change was found to range from 50 to 85 m °C−1.

Journal ArticleDOI
TL;DR: In this paper, an experimental method was proposed to determine the absorption enhancement parameter, B, that quantifies the lengthening of the photon path inside grains due to internal multiple reflections, and applied to 36 snow samples and 56 snow strata.
Abstract: In optical models snow is commonly treated as a disperse collection of particles. In this representation, the penetration depth of solar radiation is sensitive to the shape of the particles, in particular to the absorption enhancement parameter, B, that quantifies the lengthening of the photon path inside grains due to internal multiple reflections. Spherical grains, with theoretical B = 1.25, are often used. We propose an experimental method to determine B, and apply it to 36 snow samples and 56 snow strata. The method is based on radiative transfer modeling and combined measurements of reflectance and irradiance profiles. Such measurements are performed in the laboratory and in the field, in Antarctica and the French Alps. The retrieved values of B are in the range 0.7–2.4, with a wide peak between 1.4 and 1.8. An analysis of measurement error propagation based on a Bayesian framework shows that the uncertainty on B is ± 0.1, which is the order of magnitude of variations between different snow types. Thus, no systematic link between B and snow type can be inferred. Here we recommend using shapes with B = 1.6 to model snow optical properties, rather than spherical grains.

Journal ArticleDOI
TL;DR: In this paper, an assessment of area changes for glaciers mainly located in the Palena district of Chile based on glacier inventories for 1985, 2000 and 2011 that were derived from two consecutive Landsat scenes and a digital elevation model.
Abstract: Mapping changes in glacier extent from repeat optical satellite data has revealed widespread glacier decline in nearly all regions of the world over the past few decades. While numerous studies have documented the changes of the outlet glaciers of the Northern and Southern Patagonia Icefields (NPI/SPI), information about glacier changes in the Patagonian Andes (to the north of the NPI) is much scarcer. Here we present an assessment of area changes for glaciers mainly located in the Palena district of Chile based on glacier inventories for 1985, 2000 and 2011 that were derived from two consecutive Landsat scenes and a digital elevation model. The analysis revealed a dramatic area decline for the largest glaciers and total area loss of 25% from 1985 to 2011. The lower parts of several larger glaciers (>10 km2) melted completely. Area loss below 1000 m elevation was 50–100% in both periods, and 374 glaciers out of 1664 disappeared. The number of proglacial lakes increased from 223 to 327 and their area expanded by 11.6 km2 (59%) between 1985 and 2011. Seasonal snow persisting at high elevations in the 2011 scene was a major obstacle to glacier delineation, so the obtained area change rate of $1% a–1 over the entire period is a lower-bound estimate. The observed climate trends (e.g. cooling in Puerto Montt) are in contrast to the observed shrinkage.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated changes in glacier water supply, measurements from two reference glaciers were performed and used to validate satellite data and historical data for glaciers in the water catchment, and they showed that from 1964 to 2004 the total glacier area decreased by 14.7% (0.4% a-1), corresponding to an estimated volume change of 20.5%.
Abstract: The Ebinur lake basin, Tien Shan, China, was described in the early 20th century as the ‘Green Labyrinth’. This relatively productive area supports agriculture and stands in contrast to the regional aridity. Glacier melt runoff is an important source of water for this arid region and has played a significant role in its economic development. However, over the past 40 years the ecology and environment of the region have seriously degenerated due to human activity and climate change. To investigate changes in glacier water supply, measurements from two reference glaciers were performed and used to validate satellite data and historical data for glaciers in the water catchment. Variability in regional glacier total area and volume over the past 40 years was reconstructed from historical documents, aerial photographs and remote-sensing data. Our investigations of 446 glaciers showed that from 1964 to 2004 the total glacier area decreased by 14.7% (0.4% a–1), corresponding to an estimated volume change of 20.5%. During this period, the most dramatic decrease in glacier area corresponded to a rapid rise in temperature. This reduction in glacier area is accelerating and impacting the future sustainability of the region’s water resources.

Journal ArticleDOI
TL;DR: The WAIS Divide deep ice core was recently completed to a total depth of 3405 m, ending ~50 m above the bed as discussed by the authors, and the visual stratigraphy and grain characteristics indicate that the ice column at the drilling location is undisturbed by any large-scale overturning or discontinuity.
Abstract: The WAIS (West Antarctic Ice Sheet) Divide deep ice core was recently completed to a total depth of 3405 m, ending ~50 m above the bed. Investigation of the visual stratigraphy and grain characteristics indicates that the ice column at the drilling location is undisturbed by any large-scale overturning or discontinuity. The climate record developed from this core is therefore likely to be continuous and robust. Measured grain-growth rates, recrystallization characteristics, and grain-size response at climate transitions fit within current understanding. Significant impurity control on grain size is indicated from correlation analysis between impurity loading and grain size. Bubble-number densities and bubble sizes and shapes are presented through the full extent of the bubbly ice. Where bubble elongation is observed, the direction of elongation is preferentially parallel to the trace of the basal (0001) plane. Preferred crystallographic orientation of grains is present in the shallowest samples measured, and increases with depth, progressing to a vertical-girdle pattern that tightens to a vertical single-maximum fabric. This single-maximum fabric switches into multiple maxima as the grain size increases rapidly in the deepest, warmest ice. A strong dependence of the fabric on the impurity- mediated grain size is apparent in the deepest samples.

Journal ArticleDOI
TL;DR: In this article, the authors examined the spectral properties of a numerical flowline model solving the shallow-ice equations with sliding and revealed that the time evolution and spectral shape of glacier excursions depend on a single parameter, a time constant determined by the geometrical properties of the glacier.
Abstract: In order to understand the fundamental parameters governing glacier advance and retreat, and also the spectral properties of fluctuations in glacier length in response to noisy weather, we examine outputs of a numerical flowline model solving the shallow-ice equations with sliding. The numerical results reveal a surprising simplicity: the time evolution and spectral shape of glacier excursions depend on a single parameter, a time constant determined by the geometrical properties of the glacier. Furthermore, the numerical results reveal that perturbations in mass balance over the glacier surface set in motion a sequence of events that can be roughly described as occurring in three overlapping stages: (1) changes in interior thickness drive (2) changes in terminus flux, which in turn drive (3) changes in glacier length. A simple, third-order linear differential equation, which extends previous models in the literature, successfully captures these important features of the glacier flow. This three-stage linear model is readily invertible to recover climate history. It provides clear physical insight and analytical expressions for some important metrics of glacier behavior, such as variance, sensitivity and excursion probabilities. Finally, it facilitates uncertainty analysis. The linear model can also be adapted for arbitrary catchment geometry, and is applied to Nigardsbreen, Norway.

Journal ArticleDOI
TL;DR: In this paper, the authors combine 12 years (2001-12) of regional atmospheric climate model (RACMO2) output at high horizontal resolution (5.5 km) with recent observations from weather stations, ground-penetrating radar and firn cores in coastal Dronning Maud Land, East Antarctica, to describe climate and surface mass balance variations around ice rises.
Abstract: Ice rises play key roles in buttressing the neighbouring ice shelves and potentially provide palaeoclimate proxies from ice cores drilled near their divides. Little is known, however, about their influence on local climate and surface mass balance (SMB). Here we combine 12 years (2001-12) of regional atmospheric climate model (RACMO2) output at high horizontal resolution (5.5 km) with recent observations from weather stations, ground-penetrating radar and firn cores in coastal Dronning Maud Land, East Antarctica, to describe climate and SMB variations around ice rises. We demonstrate strong spatial variability of climate and SMB in the vicinity of ice rises, in contrast to flat ice shelves, where they are relatively homogeneous. Despite their higher elevation, ice rises are characterized by higher winter temperatures compared with the flat ice shelf. Ice rises strongly influence SMB patterns, mainly through orographic uplift of moist air on the upwind slopes. Besides precipitation, drifting snow contributes significantly to the ice-rise SMB. The findings reported here may aid in selecting a representative location for ice coring on ice rises, and allow better constraint of local ice-rise as well as regional ice-shelf mass balance.

Journal ArticleDOI
TL;DR: In this paper, the effect of forests on small and medium avalanches is quantified and a one-parameter function is developed to extract momentum corresponding to the stopped mass from the avalanche.
Abstract: A long-standing problem in avalanche science is to understand how forests stop avalanches. In this paper we quantify the effect of forests on small and medium avalanches, crucial for road and ski- run safety. We performed field studies on seven avalanches where trees affected the runout. We gathered information concerning the release zone location and dimension, deposition patterns and heights, runout distance and forest structure. In these studies the trees were not destroyed, but acted as rigid obstacles. Wedge-like depositions formed behind (1) individual tree stems, (2) dense tree groups and (3) young trees with low-lying branches. Using the observations as a guide, we developed a one- parameter function to extract momentum corresponding to the stopped mass from the avalanche. The function was implemented in a depth-averaged avalanche dynamics model and used to predict the observed runout distances and mean deposition heights for the seven case studies. The approach differs from existing forest interaction models, which modify avalanche friction to account for tree breakage and debris entrainment. Our results underscore the importance of forests in mitigating the danger from small-to-medium avalanches.

Journal ArticleDOI
TL;DR: In this article, an improved machine is presented to produce nature-identical snow in a cold laboratory for reproducible experiments, which is based on the common supersaturation principle of blowing cold air over a heated water basin.
Abstract: We present an improved machine to produce nature-identical snow in a cold laboratory for reproducible experiments. The machine is based on the common supersaturation principle of blowing cold air over a heated water basin. The moist airstream is directed into a chamber, where it cools and the nucleation of ice crystals is promoted on stretched nylon wires. Snow crystals grow on the wires and are harvested regularly by a new automatic brush rack. Depending on the settings, different snow crystals can be produced, which are shown to be consistent with the Nakaya diagram. The main snow types are dendrites and needles. We prepared specimens from the snow produced by the snowmaker and analyzed them using microcomputer tomography. For dendrites we show that there are natural snow samples that have the same crystal shape and similar microstructural parameters, namely density and specific surface area. The machine can produce suitable amounts of snow for laboratory experiments in an efficient way. As an advantage over previous designs, uniform and reproducible snow samples can be generated under well-defined conditions.

Journal ArticleDOI
TL;DR: In this article, the authors use a simple numerical model to test whether surface water influx to the bed of the interior Greenland ice sheet has the potential to cause significant subglacial channel growth similar to that observed near the ice-sheet margin and at alpine glaciers.
Abstract: We use a simple numerical model to test whether surface water influx to the bed of the interior Greenland ice sheet has the potential to cause significant subglacial channel growth similar to that observed near the ice-sheet margin and at alpine glaciers. We examine the effects on channel growth from (1) rapid supraglacial lake drainage events and (2) sustained water input into moulins. By assuming that all drainage occurs through subglacial channels and by prescribing favorable pressure conditions at the domain inlet, the model can provide upper bounds on channel growth. Our results indicate that R-channels do not grow significantly within the limited period of high pressure associated with lake drainage events. Subsequent channel growth only occurs with sustained pressures above overburden. Rapid closure of channels at low pressures suggests channels in the interior are unlikely to draw significant quantities of water from nearby distributed networks. These results indicate that other drainage mechanisms such as turbulent sheets or linked-cavity networks are likely to be of greater importance for interior subglacial drainage than the growth of channels.