scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Immunology in 1999"


Journal Article
TL;DR: It is demonstrated that TLR4 is the gene product that regulates LPS response, and a single point mutation of the amino acid that is highly conserved among the IL-1/Toll receptor family is found.
Abstract: The human homologue of Drosophila Toll (hToll), also called Toll-like receptor 4 (TLR4), is a recently cloned receptor of the IL-1/Toll receptor family. Interestingly, the TLR4 gene has been localized to the same region to which the Lps locus (endotoxin unresponsive gene locus) is mapped. To examine the role of TLR4 in LPS responsiveness, we have generated mice lacking TLR4. Macrophages and B cells from TLR4-deficient mice did not respond to LPS. All these manifestations were quite similar to those of LPS-hyporesponsive C3H/HeJ mice. Furthermore, C3H/HeJ mice have, in the cytoplasmic portion of TLR4, a single point mutation of the amino acid that is highly conserved among the IL-1/Toll receptor family. Overexpression of wild-type TLR4 but not the mutant TLR4 from C3H/HeJ mice activated NF-κB. Taken together, the present study demonstrates that TLR4 is the gene product that regulates LPS response.

3,506 citations


Journal Article
TL;DR: Removal of immunoregulatory CD25+4+ T cells can abrogate immunological unresponsiveness to syngeneic tumors in vivo and in vitro, leading to spontaneous development of tumor-specific effector cells as well as tumor-nonspecific ones.
Abstract: This study shows that removal of a T cell subpopulation can evoke effective tumor immunity in otherwise nonresponding animals. Elimination of CD25-expressing T cells, which constitute 5-10% of peripheral CD4+ T cells in normal naive mice, elicited potent immune responses to syngeneic tumors in vivo and eradicated them. The responses were mediated by tumor-specific CD8+ CTLs and tumor-nonspecific CD4-8- cytotoxic cells akin to NK cells. Furthermore, in vitro culture of CD25+4+ T cell-depleted splenic cell suspensions prepared from tumor-unsensitized normal mice led to spontaneous generation of similar CD4-8- cytotoxic cells capable of killing a broad spectrum of tumors; reconstitution of CD25+4+ T cells inhibited the generation. In this culture, self-reactive CD25-4+ T cells responding to self peptides/class II MHC complexes on APCs spontaneously proliferated upon removal of CD25+4+ T cells, secreting large amounts of IL-2. The IL-2 thus produced appeared to be responsible for the generation of CD4-8- NK cells as lymphokine-activated killer cells, because direct addition of an equivalent amount of IL-2 to the culture of CD4-8- cells generated similar lymphokine-activated killer/NK cells, whereas coculture of normal CD4-8- cells with CD25-4+ T cells from IL-2-deficient mice did not. Thus, removal of immunoregulatory CD25+4+ T cells can abrogate immunological unresponsiveness to syngeneic tumors in vivo and in vitro, leading to spontaneous development of tumor-specific effector cells as well as tumor-nonspecific ones. This novel way of evoking tumor immunity would help to devise effective immunotherapy for cancer in humans.

1,513 citations


Journal Article
TL;DR: The similarity of clinical response to invasive infection by Gram-positive and Gram-negative bacteria is due to bacterial recognition via similar TLRs, and a soluble preparation of peptidoglycan prepared from S. aureus was tested.
Abstract: Invasive infection with Gram-positive and Gram-negative bacteria often results in septic shock and death. The basis for the earliest steps in innate immune response to Gram-positive bacterial infection is poorly understood. The LPS component of the Gram-negative bacterial cell wall appears to activate cells via CD14 and Toll-like receptor (TLR) 2 and TLR4. We hypothesized that Gram-positive bacteria might also be recognized by TLRs. Heterologous expression of human TLR2, but not TLR4, in fibroblasts conferred responsiveness to Staphylococcus aureus and Streptococcus pneumoniae as evidenced by inducible translocation of NF-kappaB. CD14 coexpression synergistically enhanced TLR2-mediated activation. To determine which components of Gram-positive cell walls activate Toll proteins, we tested a soluble preparation of peptidoglycan prepared from S. aureus. Soluble peptidoglycan substituted for whole organisms. These data suggest that the similarity of clinical response to invasive infection by Gram-positive and Gram-negative bacteria is due to bacterial recognition via similar TLRs.

1,291 citations


Journal Article
TL;DR: Results taken together indicate that anergic/suppressive CD25+4+8- thymocytes and peripheral T cells in normal naive mice may constitute a common T cell lineage functionally and developmentally distinct from other T cells, and that production of this unique immunoregulatory T cell population can be another key function of the thymus in maintaining immunologic self-tolerance.
Abstract: This study shows that the normal thymus produces immunoregulatory CD25+4+8- thymocytes capable of controlling self-reactive T cells. Transfer of thymocyte suspensions depleted of CD25+4+8- thymocytes, which constitute approximately 5% of steroid-resistant mature CD4+8- thymocytes in normal naive mice, produces various autoimmune diseases in syngeneic athymic nude mice. These CD25+4+8- thymocytes are nonproliferative (anergic) to TCR stimulation in vitro, but potently suppress the proliferation of other CD4+8- or CD4-8+ thymocytes; breakage of their anergic state in vitro by high doses of IL-2 or anti-CD28 Ab simultaneously abrogates their suppressive activity; and transfer of such suppression-abrogated thymocyte suspensions produces autoimmune disease in nude mice. These immunoregulatory CD25+4+8- thymocytes/T cells are functionally distinct from activated CD25+4+ T cells derived from CD25-4+ thymocytes/T cells in that the latter scarcely exhibits suppressive activity in vitro, although both CD25+4+ populations express a similar profile of cell surface markers. Furthermore, the CD25+4+8- thymocytes appear to acquire their anergic and suppressive property through the thymic selection process, since TCR transgenic mice develop similar anergic/suppressive CD25+4+8- thymocytes and CD25+4+ T cells that predominantly express TCRs utilizing endogenous alpha-chains, but RAG-2-deficient TCR transgenic mice do not. These results taken together indicate that anergic/suppressive CD25+4+8- thymocytes and peripheral T cells in normal naive mice may constitute a common T cell lineage functionally and developmentally distinct from other T cells, and that production of this unique immunoregulatory T cell population can be another key function of the thymus in maintaining immunologic self-tolerance.

1,273 citations


Journal Article
TL;DR: It is demonstrated that hIL-17 can specifically and selectively recruit neutrophils into the airways via the release of C-X-C chemokines from bronchial epithelial cells and suggest a novel mechanism linking the activation of T-lymphocytes to recruitment of neutrophil into theAirways.
Abstract: IL-17 is a recently discovered cytokine that can be released from activated human CD4+ T lymphocytes. This study assessed the proinflammatory effects of human (h) IL-17 in the airways. In vitro, hIL-17 increased the release of IL-8 in human bronchial epithelial and venous endothelial cells, in a time- and concentration-dependent fashion. This effect of hIL-17 was inhibited by cotreatment with an anti-hIL-17 Ab and was potentiated by hTNF-alpha. In addition, hIL-17 increased the expression of hIL-8 mRNA in bronchial epithelial cells. Conditioned medium from hIL-17-treated bronchial epithelial cells increased human neutrophil migration in vitro. This effect was blocked by an anti-hIL-8 Ab. In vivo, intratracheal instillation of hIL-17 selectively recruited neutrophils into rat airways. This recruitment of neutrophils into the airways was inhibited by an anti-hIL-17 Ab and accompanied by increased levels of rat macrophage inflammatory protein-2 (rMIP-2) in bronchoalveolar lavage (BAL) fluid. The BAL neutrophilia was also blocked by an anti-rMIP-2 Ab. The effect of hIL-17 on the release of hIL-8 and rMIP-2 was also inhibited by glucocorticoids, in vitro and in vivo, respectively. These data demonstrate that hIL-17 can specifically and selectively recruit neutrophils into the airways via the release of C-X-C chemokines from bronchial epithelial cells and suggest a novel mechanism linking the activation of T-lymphocytes to recruitment of neutrophils into the airways.

919 citations


Journal Article
TL;DR: It is shown that viable Mycobacterium tuberculosis bacilli activated both Chinese hamster ovary cells and murine macrophages that overexpressed either TLR2 or TLR4, and that Toll-like receptors can mediate cellular activation by M. tuberculosis via CD14-independent ligands that are distinct from the mycobacterial cell wall glycolipid LAM.
Abstract: Recent studies have implicated a family of mammalian Toll-like receptors (TLR) in the activation of macrophages by Gram-negative and Gram-positive bacterial products. We have previously shown that different TLR proteins mediate cellular activation by the distinct CD14 ligands Gram-negative bacterial LPS and mycobacterial glycolipid lipoarabinomannan (LAM). Here we show that viable Mycobacterium tuberculosis bacilli activated both Chinese hamster ovary cells and murine macrophages that overexpressed either TLR2 or TLR4. This contrasted with Gram-positive bacteria and Mycobacterium avium, which activated cells via TLR2 but not TLR4. Both virulent and attenuated strains of M. tuberculosis could activate the cells in a TLR-dependent manner. Neither membrane-bound nor soluble CD14 was required for bacilli to activate cells in a TLR-dependent manner. We also assessed whether LAM was the mycobacterial cell wall component responsible for TLR-dependent cellular activation by M. tuberculosis. We found that TLR2, but not TLR4, could confer responsiveness to LAM isolated from rapidly growing mycobacteria. In contrast, LAM isolated from M. tuberculosis or Mycobacterium bovis bacillus Calmette-Guerin failed to induce TLR-dependent activation. Lastly, both soluble and cell wall-associated mycobacterial factors were capable of mediating activation via distinct TLR proteins. A soluble heat-stable and protease-resistant factor was found to mediate TLR2-dependent activation, whereas a heat-sensitive cell-associated mycobacterial factor mediated TLR4-dependent activation. Together, our data demonstrate that Toll-like receptors can mediate cellular activation by M. tuberculosis via CD14-independent ligands that are distinct from the mycobacterial cell wall glycolipid LAM.

880 citations


Journal Article
TL;DR: This work finds that, as early as 90 min after alpha-GalCer injection in vivo, NK cells also displayed considerable signs of activation, including IFN-gamma production and CD69 induction, which identifies a high-speed communication network between the innate and adaptive immune systems in vivo that is initiated upon NKT cell activation.
Abstract: α-Galactosylceramide (α-GalCer) is a glycolipid with potent antitumor properties that binds to CD1d molecules and activates mouse Vα14 and human Vα24 NKT cells. Surprisingly, we found that, as early as 90 min after α-GalCer injection in vivo, NK cells also displayed considerable signs of activation, including IFN-γ production and CD69 induction. NK activation was not observed in RAG- or CD1-deficient mice, and it was decreased by pretreatment with anti-IFN-γ Abs, suggesting that, despite its rapid induction, it was a secondary event that depended on IFN-γ release by NKT cells. At later time points, B cells and CD8 T cells also began to express CD69. These findings identify a high-speed communication network between the innate and adaptive immune systems in vivo that is initiated upon NKT cell activation. They also suggest that the antitumor effects of α-GalCer result from the sequential recruitment of distinct innate and adaptive effector lymphocytes.

852 citations


Journal Article
TL;DR: The distinct immunomodulatory activities of these classes of thalidomide analogues may potentially allow them to be used in the clinic for the treatment of different immunopathological disorders.
Abstract: TNF-alpha mediates both protective and detrimental manifestations of the host immune response. Our previous work has shown thalidomide to be a relatively selective inhibitor of TNF-alpha production in vivo and in vitro. Additionally, we have recently reported that thalidomide exerts a costimulatory effect on T cell responses. To develop thalidomide analogues with increased anti-TNF-alpha activity and reduced or absent toxicities, novel TNF-alpha inhibitors were designed and synthesized. When a selected group of these compounds was examined for their immunomodulatory activities, different patterns of cytokine modulation were revealed. The tested compounds segregated into two distinct classes: one class of compounds, shown to be potent phosphodiesterase 4 inhibitors, inhibited TNF-alpha production, increased IL-10 production by LPS-induced PBMC, and had little effect on T cell activation; the other class of compounds, similar to thalidomide, were not phosphodiesterase 4 inhibitors and markedly stimulated T cell proliferation and IL-2 and IFN-gamma production. These compounds inhibited TNF-alpha, IL-1beta, and IL-6 and greatly increased IL-10 production by LPS-induced PBMC. Similar to thalidomide, the effect of these agents on IL-12 production was dichotomous; IL-12 was inhibited when PBMC were stimulated with LPS but increased when cells were stimulated by cross-linking the TCR. The latter effect was associated with increased T cell CD40 ligand expression. The distinct immunomodulatory activities of these classes of thalidomide analogues may potentially allow them to be used in the clinic for the treatment of different immunopathological disorders.

808 citations


Journal Article
TL;DR: It is concluded that curcumin potently inhibits cytokine-mediated NF-kappa B activation by blocking a signal leading to IKK activity.
Abstract: NF-kappa B plays a critical role in the transcriptional regulation of proinflammatory gene expression in various cells. Cytokine-mediated activation of NF-kappa B requires activation of various kinases, which ultimately leads to the phosphorylation and degradation of I kappa B, the NF-kappa B cytoplasmic inhibitor. The food derivative curcumin has been shown to inhibit NF-kappa B activity in some cell types. In this report we investigate the mechanism of action of curcumin on cytokine-induced proinflammatory gene expression using intestinal epithelial cells (IEC). Curcumin inhibited IL-1 beta-mediated ICAM-1 and IL-8 gene expression in IEC-6, HT-29, and Caco-2 cells. Cytokine-induced NF-kappa B DNA binding activity, RelA nuclear translocation, I kappa B alpha degradation, I kappa B serine 32 phosphorylation, and I kappa B kinase (IKK) activity were blocked by curcumin treatment. Wound-induced p38 phosphorylation was not inhibited by curcumin treatment. In addition, mitogen-activated protein kinase/ERK kinase kinase-1-induced IL-8 gene expression and 12-O-tetraphorbol 12-myristate 13-acetate-responsive element-driven luciferase expression were inhibited by curcumin. However, I kappa B alpha degradation induced by ectopically expressed NF-kappa B-inducing kinase or IKK was not inhibited by curcumin treatment. Therefore, curcumin blocks a signal upstream of NF-kappa B-inducing kinase and IKK. We conclude that curcumin potently inhibits cytokine-mediated NF-kappa B activation by blocking a signal leading to IKK activity.

756 citations


Journal Article
TL;DR: Data indicate that TLR2 facilitates the inflammatory events associated with Lyme arthritis, and the widespread expression of lipoproteins by other bacterial species suggests that this interaction may have broad implications in microbial inflammation and pathogenesis.
Abstract: The agent of Lyme disease, Borrelia burgdorferi, produces membrane lipoproteins possessing potent inflammatory properties linked to disease pathology. The recent association of toll-like receptors (TLR) 2 and 4 with LPS responses prompted the examination of TLR involvement in lipoprotein signaling. The ability of human cell lines to respond to lipoproteins was correlated with the expression of TLR2. Transfection of TLR2 into cell lines conferred responsiveness to lipoproteins, lipopeptides, and sonicated B. burgdorferi, as measured by nuclear translocation of NF-kappaB and cytokine production. The physiological importance of this interaction was demonstrated by the 10-fold greater sensitivity of TLR2-transfected cells to lipoproteins than LPS. Futhermore, TLR2-dependent signaling by lipoproteins was facilitated by CD14. These data indicate that TLR2 facilitates the inflammatory events associated with Lyme arthritis. In addition, the widespread expression of lipoproteins by other bacterial species suggests that this interaction may have broad implications in microbial inflammation and pathogenesis.

683 citations


Journal Article
TL;DR: The results show that distinct cytokine and chemokine patterns are induced in NK cells in response to different costimulatory signals from these three monokines, which suggests that NK cell cytokine production may be governed in part by the monokine milieu induced during the early proinflammatory response to infection and by the subset of NK cells present at the site of inflammation.
Abstract: NK cells constitutively express monocyte-derived cytokine (monokine) receptors and secrete cytokines and chemokines following monokine stimulation, and are therefore a critical component of the innate immune response to infection. Here we compared the effects of three monokines (IL-18, IL-15, and IL-12) on human NK cell cytokine and chemokine production. IL-18, IL-15, or IL-12 alone did not stimulate significant cytokine or chemokine production in resting NK cells. The combination of IL-18 and IL-12 induced extremely high amounts of IFN-gamma protein (225 +/- 52 ng/ml) and a 1393 +/- 643-fold increase in IFN-gamma gene expression over those in resting NK cells. IL-15 and IL-12 induced less IFN-gamma protein (24 +/- 10 ng/ml; p < 0.007) and only a 45 +/- 19-fold increase in IFN-gamma gene expression over those in resting NK cells. The CD56bright NK cell subset produced significantly more IFN-gamma following IL-18 and IL-12 compared with CD56dim NK cells (p < 0.008). However, the combination of IL-15 and IL-12 was significantly more potent than that of IL-18 and IL-12 for NK cell production of IL-10, macrophage inflammatory protein-1alpha, macrophage inflammatory protein-1beta, and TNF-alpha at the protein and transcript levels. Granulocyte-macrophage CSF was optimally induced by IL-15 and IL-18. Resting CD56+ NK cells expressed IL-18R transcript that was up-regulated by IL-12 or IL-15. Our results show that distinct cytokine and chemokine patterns are induced in NK cells in response to different costimulatory signals from these three monokines. This suggests that NK cell cytokine production may be governed in part by the monokine milieu induced during the early proinflammatory response to infection and by the subset of NK cells present at the site of inflammation.

Journal Article
TL;DR: The enhanced susceptibility of T NF-/- is not compensated for by the presence of LT alpha, and the critical role of TNF is not in the activation of T cells and macrophages but in the local organization of granulomas.
Abstract: TNF and lymphotoxin-alpha (LT alpha) may act at various stages of the host response to Mycobacterium tuberculosis. To dissect the effects of TNF independent of LT alpha, we have used C57BL/6 mice with a disruption of the TNF gene alone (TNF-/-). Twenty-one days following aerosol M. tuberculosis infection there was a marked increase in the number of organisms in the lungs of TNF-/- mice, and by 28-35 days all animals had succumbed, with widespread dissemination of M. tuberculosis. In comparison with the localized granulomas containing activated macrophages and T cells in lungs and livers of C57BL/6 wild-type (wt) mice, cellular infiltrates in TNF-/- mice were poorly formed, with extensive regions of necrosis and neutrophilic infiltration of the alveoli. Phenotypic analysis of lung homogenates demonstrated similar numbers of CD4+ and CD8+ T cells in TNF-/- and wt mice, but in TNF-deficient mice the lymphocytes were restricted to perivascular and peribronchial areas rather than colocated with macrophages in granulomas. T cells from TNF-/- mice retained proliferative and cytokine responses to purified protein derivative, and delayed-type hypersensitivity to purified protein derivative was demonstrable. Macrophages within the lungs of TNF-/- and wt mice showed similar levels of MHC class II and inducible nitric oxide synthase expression, and levels of serum nitrite were comparable. Thus, the enhanced susceptibility of TNF-/- is not compensated for by the presence of LT alpha, and the critical role of TNF is not in the activation of T cells and macrophages but in the local organization of granulomas.

Journal Article
TL;DR: HBD-1 and hBD-2 may be integral components of epithelial innate immunity in the intestine, with each occupying a distinct functional niche in intestinal mucosal defense.
Abstract: The intestinal epithelium forms a physical barrier to limit access of enteric microbes to the host and contributes to innate host defense by producing effector molecules against luminal microbes. To further define the role of the intestinal epithelium in antimicrobial host defense, we analyzed the expression, regulation, and production of two antimicrobial peptides, human defensins hBD-1 and hBD-2, by human intestinal epithelial cells in vitro and in vivo. The human colon epithelial cell lines HT-29 and Caco-2 constitutively express hBD-1 mRNA and protein but not hBD-2. However, hBD-2 expression is rapidly induced by IL-1α stimulation or infection of those cells with enteroinvasive bacteria. Moreover, hBD-2 functions as a NF-κB target gene in the intestinal epithelium as blocking NF-κB activation inhibits the up-regulated expression of hBD-2 in response to IL-1α stimulation or bacterial infection. Caco-2 cells produce two hBD-1 isoforms and a hBD-2 peptide larger in size than previously described hBD-2 isoforms. Paralleling the in vit ro findings, human fetal intestinal xenografts constitutively express hBD-1, but not hBD-2, and hBD-2 expression, but not hBD-1, is up-regulated in xenografts infected intraluminally with Salmonella . hBD-1 is expressed by the epithelium of normal human colon and small intestine, with a similar pattern of expression in inflamed colon. In contrast, there is little hBD-2 expression by the epithelium of normal colon, but abundant hBD-2 expression by the epithelium of inflamed colon. hBD-1 and hBD-2 may be integral components of epithelial innate immunity in the intestine, with each occupying a distinct functional niche in intestinal mucosal defense.

Journal Article
TL;DR: Direct evidence is provided that SLC and CCR7 participate in the emigration of DCs from peripheral tissue to LNs via lymphatics, and this work shows MHC class II-positive cells within SLC-staining lymphatic channels in the mouse dermis.
Abstract: Dendritic cells (DCs) emigrate to regional lymph nodes (LNs) during immune responses via afferent lymphatic channels. Secondary lymphoid-tissue chemokine (SLC), a CC chemokine, is expressed in secondary lymphoid organs and mediates the chemotaxis of lymphocytes and DCs via its receptor, CC chemokine receptor 7 (CCR7). By dual-label fluorescence confocal microscopy, we showed MHC class II-positive cells within SLC-staining lymphatic channels in the mouse dermis. SLC was a potent in vitro chemoattractant for cultured, migratory skin DCs, and it enhanced the emigration of MHC class II-positive DCs from mouse skin explants by an average of 2.5-fold. Mature or cytokine-activated, but not resting, Langerhans cells expressed CCR7 mRNA by RT-PCR. Anti-SLC Abs, but not control or anti-eotaxin Abs, blocked the in vivo migration of 51Cr-labeled, skin-derived DCs from footpads to draining LNs by 50% (n = 9, p < 0. 005). Thus, we provide direct evidence that SLC and CCR7 participate in the emigration of DCs from peripheral tissue to LNs via lymphatics.

Journal Article
TL;DR: Results support a model in which distinct inflammatory cytokines act directly on naive CD4+ and CD8+ T cells to provide a third signal, along with Ag and IL-2, to optimally activate differentiation and clonal expansion.
Abstract: The effects of inflammatory cytokines on naive T cells have been studied using MHC protein/peptide complexes on microspheres, thus avoiding the use of APCs whose functions may be affected by the cytokines. IL-1, but not IL-12, increased proliferation of CD4+ T cells in response to Ag and IL-2, which is consistent with effects on in vivo priming of CD4+ cells. In contrast, proliferation of CD8+ T cells to Ag and IL-2 required IL-12, and IL-12 replaced adjuvant in stimulating an in vivo response to peptide. These results support a model in which distinct inflammatory cytokines act directly on naive CD4+ and CD8+ T cells to provide a third signal, along with Ag and IL-2, to optimally activate differentiation and clonal expansion.

Journal Article
TL;DR: In vivo administration of anti-TNF-alpha Ab results in the rapid down-regulation of a spectrum of cytokines, cytokine inhibitors, and acute-phase proteins, consistent with the concept of a cytokine-dependent cytokine cascade.
Abstract: Treatment with a chimeric mAb to TNF-alpha has been shown to suppress inflammation and improve patient well-being in rheumatoid arthritis (RA), but the mechanisms of action of such treatment have not been fully explored. Here we show that in vivo administration of anti-TNF-alpha Ab, using a longitudinal analysis, results in the rapid down-regulation of a spectrum of cytokines, cytokine inhibitors, and acute-phase proteins. Marked diurnal variation in the serum levels of some of these were detected. These results were consistent with the concept of a cytokine-dependent cytokine cascade, and the degree of clinical benefit noted after anti-TNF-alpha therapy is probably due to the reduction in many proinflammatory mediators apart from TNF-alpha, such as IL-6, which reached normal levels within 24 h. Serum levels of cytokine inhibitors such as soluble p75 and p55 TNFR were reduced as was IL-1 receptor antagonist. Reductions in acute-phase proteins occurred after serum IL-6 fell and included serum amyloid A, haptoglobin, and fibrinogen. The latter reduction could be of importance, as it is a risk factor for atherosclerosis, which is augmented in RA patients.

Journal Article
TL;DR: This report is the first describing increased expression of IL-18 in a human Th1-mediated chronic inflammatory disease, and further support the concept that IEC and dendritic cells may possess important immunoregulatory functions in both normal, as well as pathological, mucosal immunity.
Abstract: IL-18, a novel immunoregulatory cytokine with potent IFN-gamma-inducing activities, may play an important role in Th1-mediated chronic inflammatory disorders. The aim of the present study was to characterize the expression and localization of IL-18 in colonic specimens and isolated mucosal cell populations from patients with Crohn's disease (CD), a prototypic Th1-mediated disorder. Using a semiquantitative RT-PCR protocol, IL-18 mRNA transcripts were found to be increased in freshly isolated intestinal epithelial cells (IEC) and lamina propria mononuclear cells (LPMC) from CD compared with ulcerative colitis (UC) and noninflamed control (cont) patients, and were more abundant in IEC compared with LPMC. Immunohistochemical analysis of surgically resected colonic tissues localized IL-18 to both LPMC (specifically, macrophages and dendritic cells) as well as IEC. Staining was more intense in CD compared with UC and cont, and in involved (inv) vs noninvolved (n inv) areas. Western blot analysis revealed that an 18. 3-kDa band, consistent with both recombinant and mature human IL-18 protein, was found predominantly in CD vs UC intestinal mucosal biopsies; a second band of 24 kDa, consistent with the inactive IL-18 precursor, was detected in n inv areas from both CD and UC biopsies and was the sole form found in noninflamed cont. To our knowledge, this report is the first describing increased expression of IL-18 in a human Th1-mediated chronic inflammatory disease. In addition, our studies further support the concept that IEC and dendritic cells may possess important immunoregulatory functions in both normal, as well as pathological, mucosal immunity.

Journal Article
TL;DR: In this article, the authors investigated the regulation of arginase isoforms in murine bone marrow-derived macrophages (BMMPhi) in the context of Th1 and Th2 stimulation.
Abstract: Activated murine macrophages metabolize arginine by two alternative pathways involving the enzymes inducible NO synthase (iNOS) or arginase. The balance between the two enzymes is competitively regulated by Th1 and Th2 T helper cells via their secreted cytokines: Th1 cells induce iNOS, whereas Th2 cells induce arginase. Whereas the role of macrophages expressing iNOS as inflammatory cells is well established, the functional competence of macrophages expressing arginase remains a matter of speculation. Two isoforms of mammalian arginases exist, hepatic arginase I and extrahepatic arginase II. We investigated the regulation of arginase isoforms in murine bone marrow-derived macrophages (BMMPhi) in the context of Th1 and Th2 stimulation. Surprisingly, in the presence of either Th2 cytokines or Th2 cells, we observe a specific induction of the hepatic isoform arginase I in BMMPhi. Induction of arginase I was shown on the mRNA and protein levels and obeyed the recently demonstrated synergism among the Th2 cytokines IL-4 and IL-10. Arginase II was detectable in unstimulated BMMPhi and was not significantly modulated by Th1 or Th2 stimulation. Similar to murine BMMPhi, murine bone marrow-derived dendritic cells, as well as a dendritic cell line, up-regulated arginase I expression and arginase activity upon Th2 stimulation, whereas arginase II was never detected. In addition to revealing the unexpected expression of arginase I in the macrophage/monocyte lineage, these results uncover a further intriguing parallelism between iNOS and arginase: both have a constitutive and an inducible isoform, the latter regulated by the Th1/Th2 balance.

Journal Article
TL;DR: It is inferred that direct T cell control of viral replicative lesions is maintained in long term carriers of EBV and is an important component of the immune response to this virus.
Abstract: EBV is a gammaherpesvirus that can establish both nonproductive (latent) and productive (lytic) infections within the cells of its host. Although T cell responses to EBV latent proteins have been well characterized, little is known about the importance of responses to lytic proteins in long term virus carriers. Here we have compared the frequencies of CD8+ T cells specific for EBV latent and lytic Ags in healthy virus carriers, using three techniques: limiting dilution analysis, enzyme-linked immunospot assay, and FACS staining with tetrameric MHC-peptide complexes. T cells specific for EBV lytic protein epitopes were readily detectable in all donors and were usually more abundant than those specific for latent epitopes. We infer that direct T cell control of viral replicative lesions is maintained in long term carriers of EBV and is an important component of the immune response to this virus. Estimates of CD8+ T cell frequencies varied considerably according to methodology; values obtained from MHC-peptide tetramer staining were, on the average, 4.4-fold higher than those obtained from enzyme-linked immunospot assays, which were, in turn, on the average, 5.3-fold higher than those obtained from limiting dilution analysis. Tetramer staining showed that as many as 5.5% circulating CD8+ T cells in a virus carrier were specific for a single EBV lytic protein epitope. Such values are much greater than previously imagined and illustrate how antigenic challenge from a persistent herpesvirus can influence the composition of the host's CD8+ T cell pool.

Journal Article
TL;DR: The importance of IFN-gamma production by CD4 T cells appears to be early in infection, lending support to the hypothesis that early events in M. tuberculosis infection are crucial determinants of the course of infection.
Abstract: CD4 T cells are important in the protective immune response against tuberculosis. Two mouse models deficient in CD4 T cells were used to examine the mechanism by which these cells participate in protection against Mycobacterium tuberculosis challenge. Transgenic mice deficient in either MHC class II or CD4 molecules demonstrated increased susceptibility to M. tuberculosis, compared with wild-type mice. MHC class II-/- mice were more susceptible than CD4-/- mice, as measured by survival following M. tuberculosis challenge, but the relative resistance of CD4-/- mice did not appear to be due to increased numbers of CD4-8- (double-negative) T cells. Analysis of in vivo IFN-gamma production in the lungs of infected mice revealed that both mutant mouse strains were only transiently impaired in their ability to produce IFN-gamma following infection. At 2 wk postinfection, IFN-gamma production, assessed by RT-PCR and intracellular cytokine staining, in the mutant mice was reduced by >50% compared with that in wild-type mice. However, by 4 wk postinfection, both mutant and wild-type mice had similar levels of IFN-gamma mRNA and protein production. In CD4 T cell-deficient mice, IFN-gamma production was due to CD8 T cells. Thus, the importance of IFN-gamma production by CD4 T cells appears to be early in infection, lending support to the hypothesis that early events in M. tuberculosis infection are crucial determinants of the course of infection.

Journal Article
TL;DR: Further characterization of the protein Ags and epitopes targeted by AFA indicate that citrulline residues are constitutive of the AFA epitopes, but only in the context of specific amino acid sequences of filaggrin.
Abstract: Antifilaggrin autoantibodies (AFA) are a population of IgG autoantibodies associated to rheumatoid arthritis (RA), which includes the so-called "antikeratin" Abs and antiperinuclear factor. AFA are the most specific serological markers of RA. We previously showed that they recognize human epidermal filaggrin and other profilaggrin-related proteins of various epithelial tissues. Here, we report further characterization of the protein Ags and epitopes targeted by AFA. All the Ags that exhibit numerous neutral/ acidic isoelectric variants were immunochemically demonstrated to be deiminated proteins. In vitro deimination of a recombinant human filaggrin by a peptidylarginine deiminase generated AFA epitopes on the protein. Moreover, two of three filaggrin-derived synthetic peptides with a citrulline in the central position were specifically and widely recognized by AFA affinity-purified from a series of RA sera. These results indicate that citrulline residues are constitutive of the AFA epitopes, but only in the context of specific amino acid sequences of filaggrin. In competition experiments, the two peptides abolished the AFA reactivity of RA sera, showing that they present major AFA epitopes. These data should help in the identification of a putative deiminated AFA-inducing or cross-reactive articular autoantigen and provide new insights into the pathogenesis of RA. They could also open the way toward specific immunosuppressive and/or preventive therapy of RA.

Journal Article
TL;DR: Results indicate that blocking of IL-1 is a cartilage- and bone-protective therapy in destructive arthritis, whereas the TNF-alpha antagonist has little effect on tissue destruction.
Abstract: Anti-TNF-alpha treatment of rheumatoid arthritis patients markedly suppresses inflammatory disease activity, but so far no tissue-protective effects have been reported. In contrast, blockade of IL-1 in rheumatoid arthritis patients, by an IL-1 receptor antagonist, was only moderately effective in suppressing inflammatory symptoms but appeared to reduce the rate of progression of joint destruction. We therefore used an established collagen II murine arthritis model (collagen-induced arthritis(CIA)) to study effects on joint structures of neutralization of either TNF-alpha or IL-1. Both soluble TNF binding protein and anti-IL-1 treatment ameliorated disease activity when applied shortly after onset of CIA. Serum analysis revealed that early anti-TNF-alpha treatment of CIA did not decrease the process in the cartilage, as indicated by the elevated COMP levels. In contrast, anti-IL-1 treatment of established CIA normalized COMP levels, apparently alleviating the process in the tissue. Histology of knee and ankle joints corroborated the finding and showed that cartilage and joint destruction was significantly decreased after anti-IL-1 treatment but was hardly affected by anti-TNF-alpha treatment. Radiographic analysis of knee and ankle joints revealed that bone erosions were prevented by anti-IL-1 treatment, whereas the anti-TNF-alpha-treated animals exhibited changes comparable to the controls. In line with these findings, metalloproteinase activity, visualized by VDIPEN production, was almost absent throughout the cartilage layers in anti-IL-1-treated animals, whereas massive VDIPEN appearance was found in control and sTNFbp-treated mice. These results indicate that blocking of IL-1 is a cartilage- and bone-protective therapy in destructive arthritis, whereas the TNF-alpha antagonist has little effect on tissue destruction.

Journal Article
TL;DR: It is shown that autologous hsp60 is also an Ag recognized by cells of the innate immune system, such as macrophages, and induces gene expression of the Th1-promoting cytokines IL-12 and IL-15.
Abstract: Mammalian 60-kDa heat-shock protein (hsp60) is a key target of T cell and Ab responses in chronic inflammation or atherosclerosis. We show in this study that human hsp60 is also an Ag recognized by cells of the innate immune system, such as macrophages. Both mouse and human macrophages respond to contact with exogenous human hsp60 with rapid release of TNF-alpha; mouse macrophages in addition produce nitric oxide. The proinflammatory macrophage response is hsp60 dose dependent and similar in kinetics and extent to LPS stimulation. Human hsp60 was found to synergize with IFN-gamma in its proinflammatory activity. Finally, human hsp60 induces gene expression of the Th1-promoting cytokines IL-12 and IL-15. These findings identify autologous hsp60 as a danger signal for the innate immune system, with important implications for a role of local hsp60 expression/release in chronic Th1-dependent tissue inflammation.

Journal Article
TL;DR: Results indicate that DC differentiated in the presence of Dex are at a more immature stage, and glucocorticoids may act at the very first step of the immune response by modulating DC differentiation, maturation, and function.
Abstract: Because dendritic cells (DC) play a major role in the initiation of T cell-mediated immunity, we studied the effects of glucocorticoids, well-known inhibitors of the immune and inflammatory response, on the differentiation and maturation of human DC. DC were differentiated from human monocytes by culture with GM-CSF and IL-4 for 7 days with and without dexamethasone (Dex). Cells treated with Dex (10-8 M) (Dex-DC) developed a characteristic dendritic morphology; however, membrane phenotype analysis demonstrated that they were not fully differentiated. Dex-DC expressed low levels of CD1a and, unlike untreated cells, high levels of CD14 and CD16. Molecules involved in Ag presentation (CD40, CD86, CD54) were also impaired. In contrast, molecules involved in Ag uptake (mannose receptor, CD32) and cell adhesion (CD11/CD18, CD54) were up-regulated. After exposure to TNF-alpha or CD40 ligand, Dex-DC expressed lower levels of CD83 and CD86 than untreated cells. Dex-DC showed a higher endocytic activity, a lower APC function, and a lower capacity to secrete cytokines than untreated cells. Overall, these results indicate that DC differentiated in the presence of Dex are at a more immature stage. Moreover, Dex also partially blocked terminal maturation of already differentiated DC. In conclusion, our data suggest that glucocorticoids may act at the very first step of the immune response by modulating DC differentiation, maturation, and function.

Journal Article
TL;DR: It is suggested that alpha E beta 7 is involved in the expansion/recruitment of TCR alpha beta+ CD8+ IEL following microbial colonization and lamina propria T lymphocyte numbers were diminished in alpha E-deficient mice.
Abstract: The mucosal lymphocyte integrin alpha E(CD103)beta 7 is thought to be important for intraepithelial lymphocyte (IEL) localization or function. We cloned the murine integrin gene encoding alpha E, localized it to chromosome 11, and generated integrin alpha E-deficient mice. In alpha E-/- mice, intestinal and vaginal IEL numbers were reduced, consistent with the known binding of alpha E beta 7 to E-cadherin expressed on epithelial cells. However, it was surprising that lamina propria T lymphocyte numbers were diminished, as E-cadherin is not expressed in the lamina propria. In contrast, peribronchial, intrapulmonary, Peyer's patch, and splenic T lymphocyte numbers were not reduced in alpha E-deficient mice. Thus, alpha E beta 7 was important for generating or maintaining the gut and vaginal T lymphocytes located diffusely within the epithelium or lamina propria but not for generating the gut-associated organized lymphoid tissues. Finally, the impact of alpha E deficiency upon intestinal IEL numbers was greater at 3-4 wk of life than in younger animals, and affected the TCR alpha beta+ CD8+ T cells more than the gamma delta T cells or the TCR alpha beta+ CD4+CD8- population. These findings suggest that alpha E beta 7 is involved in the expansion/recruitment of TCR alpha beta+ CD8+ IEL following microbial colonization. Integrin alpha E-deficient mice will provide an important tool for studying the role of alpha E beta 7 and of alpha E beta 7-expressing mucosal T lymphocytes in vivo.

Journal Article
TL;DR: TCR gene transfer to patient PBL can produce CTL with anti-tumor reactivity in vitro and could potentially offer a treatment for patients with metastatic melanoma and offer unique opportunities to study the fate of adoptively transferred T cells in vivo.
Abstract: The tumor-associated-Ag MART-1 is expressed by most human melanomas. The genes encoding an αβ TCR from a MART-1-specific, HLA-A2-restricted, human T cell clone have been efficiently transferred and expressed in human PBL. These retrovirally transduced PBL cultures were MART-1 peptide reactive, and most cultures recognized HLA-A2 + melanoma lines. Limiting dilution clones were generated from three bulk transduced PBL cultures to investigate the function of individual clones within the transduced cultures. Twenty-nine of 29 CD8 + clones specifically secreted IFN-γ in response to T2 cells pulsed with MART-1 (27–35) peptide, and 23 of 29 specifically secreted IFN-γ in response to HLA-A2 + melanoma lines. Additionally, 23 of 29 CD8 + clones lysed T2 cells pulsed with the MART-1 (27–35) peptide and 15 of 29 lysed the HLA-A2 + melanoma line 888. CD4 + clones specifically secreted IFN-γ in response to T2 cells pulsed with the MART-1 (27–35) peptide. TCR gene transfer to patient PBL can produce CTL with anti-tumor reactivity in vitro and could potentially offer a treatment for patients with metastatic melanoma. This approach could also be applied to the treatment of other tumors and viral infections. Additionally, TCR gene transfer offers unique opportunities to study the fate of adoptively transferred T cells in vivo.

Journal Article
TL;DR: Improved ability to define the strength of the allospecific immune response by enzyme-linked immunospot assay may allow improved pairing of recipients with donors and identification of kidney allograft donor-recipient pairs at high risk for acute rejection, thus permitting targeted interventions aimed at prolonging graft survival.
Abstract: While matching for MHC Ags improves renal allograft survival, closely matched grafts sometimes fail due to rejection, and poorly matched allografts are often well tolerated by the recipient. The severity of the rejection process may partially depend on the presence of environmentally primed T cells in the recipient that cross-react with donor Ags. To test for the presence of primed, donor-specific T cells in humans before transplantation, we used an enzyme-linked immunospot assay for detection of allospecific cytokines produced by individual human PBLs. We demonstrate that this approach detects cytokine production at single cell resolution and detects production of IFN-gamma only when there is defined immunologic priming, thus representing a measure of primed donor-specific immunity. Because the environmental Ag exposure of the recipient is not a function of the HLA mismatch between donor and potential recipient, the number of HLA mismatches may not correlate with the frequency of pretransplant, donor-specific IFN-gamma-producing PBLs. Studies of donor-specific IFN-gamma-producing lymphocytes in a cohort of patients being evaluated for renal transplantation corroborated this hypothesis. Moreover, for recipients of both living and cadaver renal allografts, the pretransplant frequency of donor-specific memory cells correlated with the posttransplant risk of developing acute rejection episodes. This improved ability to define the strength of the allospecific immune response by enzyme-linked immunospot assay may allow improved pairing of recipients with donors and identification of kidney allograft donor-recipient pairs at high risk for acute rejection, thus permitting targeted interventions aimed at prolonging graft survival.

Journal Article
TL;DR: It is demonstrated that the avidity of a T cell for its tumor target is due to the specific affinity of the TCR for its peptide-MHC ligand, and that this interaction can be described using peptide -MHC tetramers and used to isolate high avidity tumor-reactive CTL.
Abstract: Immunogenic peptides of human tumor Ag have been used to generate antigen-specific CTL. However, the vast majority of these peptide-specific CTL clones are of low avidity and are peptide, but not tumor, reactive. Peptide-MHC tetramers have been shown to bind specific TCRs with sufficient affinity to be useful reagents for flow cytometry. In this paper we demonstrate that peptide-MHC tetramers can also be used to selectively identify high avidity tumor-reactive CTL and enrich, from a heterogeneous population, the subpopulation of peptide-reactive T cells that can lyse tumor targets. The melanoma proteins, MART-1 and gp100, were used to induce potentially tumor-reactive T cells, and the intensity of T cell staining by TCR binding of specific peptide-MHC tetramers was assessed. A range of fluorescence intensity was detected, and the magnitude of tetramer binding was correlated with T cell avidity. The population of peptide-reactive T cells was phenotypically similar with regard to expression of TCR and adhesion molecules, suggesting that this differential avidity for tumor cells reflected differential affinity of the TCR for its peptide-MHC ligand. Sorting, cloning, and expansion of tetramerhigh CTL from a heterogeneous population of peptide-stimulated PBMCs enabled rapid selection of high avidity tumor-reactive CTL clones, which retained their functional and tetramerhigh phenotype on re-expansion. These results demonstrate that the avidity of a T cell for its tumor target is due to the specific affinity of the TCR for its peptide-MHC ligand, that this interaction can be described using peptide-MHC tetramers and used to isolate high avidity tumor-reactive CTL.

Journal Article
TL;DR: Results indicate that airway epithelial cells express IL- 4R constitutively and that IL-4 directly induces the differentiation of epithelium into mucous glycoconjugate-containing goblet cells.
Abstract: Goblet cell metaplasia and mucus hypersecretion are important features in the pathogenesis of asthma. The cytokine IL-4 has been shown to play a role in animal models of asthma, where it induces Th2 lymphocyte differentiation and B lymphocyte IgE class switch. IL-4 has also been implicated in the differentiation of goblet cells via effects on lymphocytes and eosinophils. In this study we hypothesized that IL-4 induces airway epithelial cell mucin gene expression and mucous glycoconjugate production by direct action on these cells. In vitro, cultured airway epithelial cells (NCI-H292) expressed IL-4R constitutively, and IL-4 (10 ng/ml) induced MUC2 gene expression and mucous glycoconjugate production. In vivo, mouse airway epithelial cells expressed IL-4R constitutively, and IL-4 (250 ng) increased MUC5 gene expression and Alcian blue/periodic acid-Schiff-positive staining at 24 h; IL-4 did not increase inflammatory cell numbers in airway tissue or in bronchoalveolar lavage. TNF-alpha and IL-1beta levels in bronchoalveolar lavage were not increased in response to IL-4 instillation. These results indicate that airway epithelial cells express IL-4R constitutively and that IL-4 directly induces the differentiation of epithelium into mucous glycoconjugate-containing goblet cells.

Journal Article
TL;DR: The present data support the clinical use of mature, rather than immature, tumor Ag-pulsed dendritic cells as cancer vaccines and identifies CD40L as a potent stimulus to enhance their in vivo Ag-presenting capacity.
Abstract: Bone marrow-derived dendritic cells (BmDC) are potent APC and can promote antitumor immunity in mice when pulsed with tumor Ag. This study aimed to define the culture conditions and maturation stages of BmDC that enable them to optimally function as APC in vivo. BmDC cultured under various conditions (granulocyte-macrophage CSF (GM-CSF) or GM-CSF plus IL-4 alone or in combination with Flt3 ligand, TNF-alpha, LPS, or CD40 ligand (CD40L)) were analyzed morphologically, phenotypically, and functionally and were tested for their ability to promote prophylactic and/or therapeutic antitumor immunity. Each of the culture conditions generated typical BmDC. Whereas cells cultured in GM-CSF alone were functionally immature, cells incubated with CD40L or LPS were mature BmDC, as evident by morphology, capacity to internalize Ag, migration into regional lymph nodes, IL-12 secretion, and alloantigen or peptide Ag presentation in vitro. The remaining cultures exhibited intermediate dendritic cell maturation. The in vivo Ag-presenting capacity of BmDC was compared with respect to induction of both protective tumor immunity and immunotherapy of established tumors, using the poorly immunogenic squamous cell carcinoma, KLN205. In correspondence to their maturation stage, BmDC cultured in the presence of CD40L exhibited the most potent immunostimulatory effects. In general, although not entirely, the capacity of BmDC to induce an antitumor immune response in vivo correlated to their degree of maturation. The present data support the clinical use of mature, rather than immature, tumor Ag-pulsed dendritic cells as cancer vaccines and identifies CD40L as a potent stimulus to enhance their in vivo Ag-presenting capacity.