scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Neurochemistry in 2020"


Journal ArticleDOI
TL;DR: A mechanistic hypothesis for synaptic failure in Alzheimer's disease that can be modified as new knowledge is added and specific therapeutics are developed is synthesized.
Abstract: It is increasingly accepted that early cognitive impairment in Alzheimer's disease results in considerable part from synaptic dysfunction caused by the accumulation of a range of oligomeric assemblies of amyloid β-protein (Aβ). Most studies have used synthetic Aβ peptides to explore the mechanisms of memory deficits in rodent models, but recent work suggests that Aβ assemblies isolated from human (AD) brain tissue are far more potent and disease-relevant. Although reductionist experiments show Aβ oligomers to impair synaptic plasticity and neuronal viability, the responsible mechanisms are only partly understood. Glutamatergic receptors, GABAergic receptors, nicotinic receptors, insulin receptors, the cellular prion protein, inflammatory mediators, and diverse signaling pathways have all been suggested. Studies using AD brain-derived soluble Aβ oligomers suggest that only certain bioactive forms (principally small, diffusible oligomers) can disrupt synaptic plasticity, including by binding to plasma membranes and changing excitatory-inhibitory balance, perturbing mGluR, PrP, and other neuronal surface proteins, down-regulating glutamate transporters, causing glutamate spillover, and activating extrasynaptic GluN2B-containing NMDA receptors. We synthesize these emerging data into a mechanistic hypothesis for synaptic failure in Alzheimer's disease that can be modified as new knowledge is added and specific therapeutics are developed.

141 citations


Journal ArticleDOI
TL;DR: The results show that the NLRP3 inflammasome is activated not only by fibrillar Aβ aggregates as reported before, but also by lower molecular weight Aβ oligomers and protofibrils, highlighting the possibility that microglial activation by these Aβ species may initiate innate immune responses in the central nervous system prior to the onset of Aβ deposition.
Abstract: Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder causing memory loss, language problems and behavioural disturbances. AD is associated with the accumulation of fibrillar amyloid-β (Aβ) and the formation of neurofibrillary tau tangles. Fibrillar Aβ itself represents a danger-associated molecular pattern, which is recognized by specific microglial receptors. One of the key players is formation of the NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome, whose activation has been demonstrated in AD patient brains and transgenic animal models of AD. Here, we investigated whether Aβ oligomers or protofibrils that represent lower molecular aggregates prior to Aβ deposition are able to activate the NLRP3 inflammasome and subsequent interleukin-1 beta (IL-1β) release by microglia. In our study, we used Aβ preparations of different sizes: small oligomers and protofibrils of which the structure was confirmed by atomic force microscopy. Primary microglial cells from C57BL/6 mice were treated with the respective Aβ preparations and NLRP3 inflammasome activation, represented by caspase-1 cleavage, IL-1β production, and apoptosis-associated speck-like protein containing a CARD speck formation was analysed. Both protofibrils and low molecular weight Aβ aggregates induced a significant increase in IL-1β release. Inflammasome activation was confirmed by apoptosis-associated speck-like protein containing a CARD speck formation and detection of active caspase-1. The NLRP3 inflammasome inhibitor MCC950 completely inhibited the Aβ-induced immune response. Our results show that the NLRP3 inflammasome is activated not only by fibrillar Aβ aggregates as reported before, but also by lower molecular weight Aβ oligomers and protofibrils, highlighting the possibility that microglial activation by these Aβ species may initiate innate immune responses in the central nervous system prior to the onset of Aβ deposition. Cover Image for this issue: https://doi.org/10.1111/jnc.14773.

87 citations


Journal ArticleDOI
TL;DR: Recent progress made towards understanding the molecular mechanisms that regulate the trafficking of GluN2‐containing N MDARs are reviewed, focusing on the roles of several key synaptic proteins that interact with NMDARs via their carboxyl termini.
Abstract: The N-methyl-D-aspartate receptors (NMDARs) are ionotropic glutamate receptors that mediate the flux of calcium (Ca ) into the postsynaptic compartment. Calcium influx subsequently triggers the activation of various intracellular signaling cascades that underpin multiple forms of synaptic plasticity. Functional NMDARs are assembled as heterotetramers composed of two obligatory GluN1 subunits and two GluN2 or GluN3 subunits. Four different GluN2 subunits (GluN2A-D) are present throughout the central nervous system; however, they are differentially expressed, both developmentally and spatially, in a cell- and synapse-specific manner. Each GluN2 subunit confers NMDARs with distinct ion channel properties and intracellular trafficking pathways. Regulated membrane trafficking of NMDARs is a dynamic process that ultimately determines the number of NMDARs at synapses, and is controlled by subunit-specific interactions with various intracellular regulatory proteins. Here we review recent progress made towards understanding the molecular mechanisms that regulate the trafficking of GluN2-containing NMDARs, focusing on the roles of several key synaptic proteins that interact with NMDARs via their carboxyl termini.

81 citations


Journal ArticleDOI
TL;DR: It is shown how a singular type of autophagy-dependent cell death termed autosis has attracted attention as a promising target for improving outcomes in perinatal asphyxia and hypoxic-ischaemic injury to the immature brain.
Abstract: In autophagy long-lived proteins, protein aggregates or damaged organelles are engulfed by vesicles called autophagosomes prior to lysosomal degradation. Autophagy dysfunction is a hallmark of several neurodegenerative diseases in which misfolded proteins or dysfunctional mitochondria accumulate. Excessive autophagy can also exacerbate brain injury under certain conditions. In this review, we provide specific examples to illustrate the critical role played by autophagy in pathological conditions affecting the brain and discuss potential therapeutic implications. We show how a singular type of autophagy-dependent cell death termed autosis has attracted attention as a promising target for improving outcomes in perinatal asphyxia and hypoxic-ischaemic injury to the immature brain. We provide evidence that autophagy inhibition may be protective against radiotherapy-induced damage to the young brain. We describe a specialized form of macroautophagy of therapeutic relevance for motoneuron and neuromuscular diseases, known as chaperone-assisted selective autophagy, in which heat shock protein B8 is used to deliver aberrant proteins to autophagosomes. We summarize studies pinpointing mitophagy mediated by the serine/threonine kinase PINK1 and the ubiquitin-protein ligase Parkin as a mechanism potentially relevant to Parkinson's disease, despite debate over the physiological conditions in which it is activated in organisms. Finally, with the example of the autophagy-inducing agent rilmenidine and its discrepant effects in cell culture and mouse models of motor neuron disorders, we illustrate the importance of considering aspects such a disease stage and aggressiveness, type of insult and load of damaged or toxic cellular components, when choosing the appropriate drug, timepoint and duration of treatment.

73 citations


Journal ArticleDOI
TL;DR: The results propose that SCFAs regulates early neural system development, which might be relevant for a putative ‘maternal gut‐fetal brain‐axis’.
Abstract: Short-chain fatty acids (SCFAs) are a group of fatty acids predominantly produced during the fermentation of dietary fibers by the gut anaerobic microbiota. SCFAs affect many host processes in health and disease. SCFAs play an important role in the 'gut-brain axis', regulating central nervous system processes, for example, cell-cell interaction, neurotransmitter synthesis and release, microglia activation, mitochondrial function, and gene expression. SCFAs also promote the growth of neurospheres from human neural stem cells and the differentiation of embryonic stem cells into neural cells. It is plausible that maternally derived SCFAs may pass the placenta and expose the fetus at key developmental periods. However, it is unclear how SCFA exposure at physiological levels influence the early-stage neural cells. In this study, we explored the effect of SCFAs on the growth rate of human neural progenitor cells (hNPCs), generated from human embryonic stem cell line (HS980), with IncuCyte live-cell analysis system and immunofluorescence. We found that physiologically relevant levels (µM) of SCFAs (acetate, propionate, butyrate) increased the growth rate of hNPCs significantly and induced more cells to undergo mitosis, while high levels (mM) of SCFAs had toxic effects on hNPCs. Moreover, no effect on apoptosis was observed in physiological-dose SCFA treatments. In support, data from q-RT PCR showed that SCFA treatments influenced the expression of the neurogenesis, proliferation, and apoptosis-related genes ATR, BCL2, BID, CASP8, CDK2, E2F1, FAS, NDN, and VEGFA. To conclude, our results propose that SCFAs regulates early neural system development. This might be relevant for a putative 'maternal gut-fetal brain-axis'. Cover Image for this issue: doi: 10.1111/jnc.14761.

60 citations


Journal ArticleDOI
TL;DR: There is no confirmed, reliable evidence for an antagonist activity of kynurenic acid at nicotinic receptors, and since there is overwhelming evidence for kynurenate acting at ionotropic glutamate receptors, especially NMDAR glutamate and glycine sites, results with kynUREnic acid should be interpreted only in terms of these confirmed sites of action.
Abstract: As a major metabolite of kynurenine in the oxidative metabolism of tryptophan, kynurenic acid is of considerable biological and clinical importance as an endogenous antagonist of glutamate in the central nervous system. It is most active as an antagonist at receptors sensitive to N-methyl-D-aspartate (NMDA) which regulate neuronal excitability and plasticity, brain development and behaviour. It is also thought to play a causative role in hypo-glutamatergic conditions such as schizophrenia, and a protective role in several neurodegenerative disorders, notably Huntington's disease. An additional hypothesis, that kynurenic acid could block nicotinic receptors for acetylcholine in the central nervous system has been proposed as an alternative mechanism of action of kynurenate. However, the evidence for this alternative mechanism is highly controversial, partly because at least eight earlier studies concluded that kynurenic acid blocked NMDA receptors but not nicotinic receptors and five subsequent, independent studies designed to repeat the results have failed to do so. Many studies considered to support the alternative 'nicotinic' hypothesis have been based on the use of analogs of kynurenate such as 7-chloro-kynurenic acid, or putatively nicotinic modulators such as galantamine, but a detailed analysis of the pharmacology of these compounds suggests that the results have often been misinterpreted, especially since the pharmacology of galantamine itself has been disputed. This review examines the evidence in detail, with the conclusion that there is no confirmed, reliable evidence for an antagonist activity of kynurenic acid at nicotinic receptors. Therefore, since there is overwhelming evidence for kynurenate acting at ionotropic glutamate receptors, especially NMDAR glutamate and glycine sites, with some activity at GPR35 sites and Aryl Hydrocarbon Receptors, results with kynurenic acid should be interpreted only in terms of these confirmed sites of action.

57 citations


Journal ArticleDOI
TL;DR: A systematic assessment of where synucleinopathies stand will be useful to steer the field and contribute to filling knowledge gaps that may form the foundations for future therapeutic strategies, which is where the authors need to go.
Abstract: Synucleinopathies are a group of disorders characterized by the accumulation of inclusions rich in the a-synuclein (aSyn) protein. This group of disorders includes Parkinson's disease, dementia with Lewy bodies (DLB), multiple systems atrophy, and pure autonomic failure (PAF). In addition, genetic alterations (point mutations and multiplications) in the gene encoding for aSyn (SNCA) are associated with familial forms of Parkinson's disease, the most common synucleinopathy. The Synuclein Meetings are a series that has been taking place every 2 years for about 12 years. The Synuclein Meetings bring together leading experts in the field of Synuclein and related human conditions with the goal of discussing and advancing the research. In 2019, the Synuclein meeting took place in Ofir, a city in the outskirts of Porto, Portugal. The meeting, entitled "Synuclein Meeting 2019: Where we are and where we need to go", brought together >300 scientists studying both clinical and molecular aspects of synucleinopathies. The meeting covered a many of the open questions in the field, in a format that prompted open discussions between the participants, and underscored the need for additional research that, hopefully, will lead to future therapies for a group of as of yet incurable disorders. Here, we provide a summary of the topics discussed in each session and highlight what we know, what we do not know, and what progress needs to be made in order to enable the field to continue to advance. We are confident this systematic assessment of where we stand will be useful to steer the field and contribute to filling knowledge gaps that may form the foundations for future therapeutic strategies, which is where we need to go.

54 citations


Journal ArticleDOI
TL;DR: Three decades of studies with AβOs are summarized, providing a compelling bulk of evidence regarding cell‐specific mechanisms of toxicity, and cellular models may lead to a deeper understanding of the detrimental effects of A βOs in neurons and glial cells.
Abstract: Amyloid-β (Aβ) dysmetabolism is tightly associated with pathological processes in Alzheimer's disease (AD). Currently, it is thought that, in addition to Aβ fibrils that give rise to plaque formation, Aβ aggregates into non-fibrillar soluble oligomers (AβOs). Soluble AβOs have been extensively studied for their synaptotoxic and neurotoxic properties. In this review, we discuss physicochemical properties of AβOs and their impact on different brain cell types in AD. Additionally, we summarize three decades of studies with AβOs, providing a compelling bulk of evidence regarding cell-specific mechanisms of toxicity. Cellular models may lead us to a deeper understanding of the detrimental effects of AβOs in neurons and glial cells, putatively shedding light on the development of innovative therapies for AD.

48 citations


Journal ArticleDOI
TL;DR: This review focuses on the intracellular events that drive the pathology of NPCD, and introduces endocytosis, a much‐studied area of dysfunction in NPCD cells, and survey the various ways in which this process malfunctions.
Abstract: Niemann-Pick type C disease (NPCD) was first described in 1914 and affects approximately 1 in 150 000 live births. It is characterized clinically by diverse symptoms affecting liver, spleen, motor control, and brain; premature death invariably results. Its molecular origins were traced, as late as 1997, to a protein of late endosomes and lysosomes which was named NPC1. Mutation or absence of this protein leads to accumulation of cholesterol in these organelles. In this review, we focus on the intracellular events that drive the pathology of this disease. We first introduce endocytosis, a much-studied area of dysfunction in NPCD cells, and survey the various ways in which this process malfunctions. We briefly consider autophagy before attempting to map the more complex pathways by which lysosomal cholesterol storage leads to protein misregulation, mitochondrial dysfunction, and cell death. We then briefly introduce the metabolic pathways of sphingolipids (as these emerge as key species for treatment) and critically examine the various treatment approaches that have been attempted to date.

46 citations


Journal ArticleDOI
TL;DR: This study provides novel evidences that NSC-derived EVs enhanced mitochondrial function, SIRT1 activation, synaptic activity, decreased inflammatory response, and rescued cognitive deficits in AD like mice.
Abstract: Small extracellular vesicles (EVs), including exosomes, play multiple physiological roles. In neurodegenerative diseases, EVs can be pivotal in dispersing neuropathogenic proteins. This study investigates the role of neural stem cell (NSC)-derived EVs in a transgenic (Tg) mouse model of Alzheimer's disease (AD). Five weeks following treatment on 9-month-old APP/PS1 mice, the effects of NSC-derived EVs on cognitive behavior, mitochondrial function, sirtuin1 (SIRT1), synaptic function and morphology, quantification of amyloid-β (Aβ) level, and inflammatory response were investigated. The results showed that mice in the Tg-NSCs-ev group exhibited significant improvement in cognitive performance compared with Tg-Veh group. Furthermore, the expression of mitochondrial function-related factors (peroxisome proliferator-activated receptor-γ coactivator-1α [PGC1α], nuclear respiratory factor 1 and 2 [NRF1 and 2], and fission 1 [Fis1]), SIRT1 as well as synaptic proteins (growth-associated protein 43 [GAP43], synaptophysin [SYP], post-synaptic density 95 [PSD95] and microtubule-associated protein 2 [MAP2]) were significantly higher in the Tg-NSCs-ev group, when compared with the Tg-Veh group. In addition, oxidative damage markers (anti-4-Hydroxynonenal [4-HNE] and anti-3 nitrotyrosine [3-NT]), inflammatory cytokines and the microglial marker (Iba1) were significantly lower in the Tg-NSCs-ev group, compared to the Tg-Veh group. Moreover, synaptic morphology was distinctly improved in the Tg-NSCs-ev group, whereas the Aβ level was not altered. Our study provides novel evidences that NSC-derived EVs enhanced mitochondrial function, SIRT1 activation, synaptic activity, decreased inflammatory response, and rescued cognitive deficits in AD like mice.

44 citations


Journal ArticleDOI
Huiying Liu1, Hao Wu1, Ning Zhu1, Zijie Xu1, Yue Wang1, Yan Qu1, Jun Wang1 
TL;DR: The results indicate that Lf has a neuroprotective effect on MPTP‐induced PD model mice, and its mechanism may be related to anti‐iron dysregulation, anti‐oxidative stress, and anti‐apoptosis, with apo‐Lf showing greater efficacy.
Abstract: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease. Its pathological features are dopaminergic neuronal death in the substantia nigra (SN), and significant reduction in dopamine (DA) content in the striatum. A large number of studies have found an increase in iron levels in PD patients and animal models, which suggested that brain iron metabolism dysfunction played a key role in the pathogenesis of PD. Lactoferrin (Lf) is a non‐heme iron‐binding glycoprotein belonging to the transferrin family, entering the cell membrane via a lactoferrin receptor‐mediated pathway. Lf exists mainly in two forms: iron‐free‐lactoferrin (apo‐Lf) and iron‐saturated‐lactoferrin (holo‐Lf). Our previous studies found thatapo‐Lf and holo‐Lf exert neuroprotective effects against 1‐methyl‐4‐phenylpyridinium toxicity in ventral mesencephalon neurons in vitro. This study aimed to further investigate whether two different forms of Lf have neuroprotective effects in vivo, and to examine their mechanisms, so as to provide an experimental basis for finding new therapeutic strategies against PD. In the central nervous system, Lf antagonized 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP)‐induced DA depletion in the striatum, iron deposition, oxidative, and apoptotic processes in the SN. Lf treatment down‐regulated iron import protein divalent metal transporter1 and up‐regulated iron export protein ferroportin1, attenuating MPTP‐induced accumulation of nigral iron level. In the peripheral system, Lf alleviated MPTP‐induced increases in serum iron and ferritin, and decreases in serum total iron‐binding capacity, loss of spleen weight, and reduction in spleen iron content. The results indicate that Lf has a neuroprotective effect on MPTP‐induced PD model mice, and its mechanism may be related to anti‐iron dysregulation, anti‐oxidative stress, and anti‐apoptosis, with apo‐Lf showing greater efficacy. Therefore, Lf might be a promising therapeutic substance for PD.

Journal ArticleDOI
TL;DR: The cellular effects and the signal transduction pathways evoked by TGF‐β1 in rattus norvegicus neuronal Schwann RSC96 cell are investigated and it is concluded that TGF•β1 controls RSC 96 Schwann cell migration and invasion through MMP‐2 and M MP‐9 activities.
Abstract: Following peripheral nerve injury, remnant Schwann cells adopt a migratory phenotype and remodel the extracellular matrix allowing axonal regrowth. Although much evidence has demonstrated that TGF-β1 promotes glioma cell motility and induces the expression of extracellular matrix proteins, the effects of TGF-β1 on Schwann cell migration has not yet been studied. We therefore investigated the cellular effects and the signal transduction pathways evoked by TGF-β1 in rattus norvegicus neuronal Schwann RSC96 cell. TGF-β1 significantly increased migration and invasion of Schwann cells assessed by the wound-healing assay and by cell invasion assay. TGF-β1-enhanced migration/invasion was blocked by inhibition of MMP-2 and MMP-9. Consistently, by real-time and western blot analyses, we demonstrated that TGF-β1 increased MMP-2 and MMP-9 mRNA and protein levels. TGF-β1 also increased MMPs activities in cell growth medium, as shown by gelatin zymography. The selective TGF-β Type I receptor inhibitor SB431542 completely abrogated any effects by TGF-β1. Indeed, TGF-β1 Type I receptor activation provoked the cytosol-to-nucleus translocation of SMAD2 and SMAD3. SMAD2 knockdown by siRNA blocked MMP-2 induction and cell migration/invasion due to TGF-β1. TGF-β1 also provoked phosphorylation of MAPKs extracellular regulated kinase 1/2 and JNK1/2. Both MAPKs were upstream to p65/NF-kB inasmuch as both MAPKs' inhibitors PD98059 and SP600125 or their down-regulation by siRNA significantly blocked the TGF-β1-induced nuclear translocation of p65/NF-kB. In addition, p65/NF-κB siRNA knockdown inhibited the effects of TGF-β1 on both MMP-9 and cell migration/invasion. We conclude that TGF-β1 controls RSC96 Schwann cell migration and invasion through MMP-2 and MMP-9 activities. MMP-2 is controlled by SMAD2 whilst MMP-9 is controlled via an ERK1/2-JNK1/2-NF-κB dependent pathway.

Journal ArticleDOI
TL;DR: The role of genetic variants in DβH and its role in health and disease is discussed.
Abstract: Dopamine beta-hydroxylase (DβH) is an essential neurotransmitter-synthesizing enzyme that catalyzes the formation of norepinephrine (NE) from dopamine and has been extensively studied since its discovery in the 1950s. NE serves as a neurotransmitter in both the central and peripheral nervous systems and is the precursor to epinephrine synthesis in the brain and adrenal medulla. Alterations in noradrenergic signaling have been linked to both central nervous system and peripheral pathologies. DβH protein, which is found in circulation, can, therefore, be evaluated as a marker of norepinephrine function in a plethora of different disorders and diseases. In many of these diseases, DβH protein availability and activity are believed to contribute to disease presentation or select symptomology and are believed to be under strong genetic control. Alteration in the DβH protein by genetic polymorphisms may result in DβH becoming rate-limiting and directly contributing to lower NE and epinephrine levels and disease. With the completion of the human genome project and the advent of next-generation sequencing, new insights have been gained into the existence of naturally occurring DβH sequencing variants (genetic polymorphisms) in disease. Also, biophysical tools coupled with genetic sequences are illuminating structure-function relationships within the enzyme. In this review, we discuss the role of genetic variants in DβH and its role in health and disease.

Journal ArticleDOI
TL;DR: Evidence showing the positive effects of physical exercise in the brain is reviewed and recent evidence that irisin, a myokine stimulated by physical exercise derived from fibronectin type III domain‐containing protein 5 (FNDC5) transmembrane protein, has neuroprotective actions in thebrain is discussed.
Abstract: The proportion of elderly populations is rapidly booming, and human lifespan has considerably increased in the past century because of scientific and medical advances. However, the winds of change brought by the 21st century made sedentarism one of the factors that renders the brain vulnerable to age-related chronic diseases, such as Alzheimer's disease (AD). Conversely, physical exercise has been shown to stimulate molecular mechanisms beneficial to cognition. Here, we review evidence showing the positive effects of physical exercise in the brain. We further discuss recent evidence that irisin, a myokine stimulated by physical exercise derived from fibronectin type III domain-containing protein 5 (FNDC5) transmembrane protein, has neuroprotective actions in the brain. Lastly, we highlight the importance of the crosstalk between the periphery and the brain in cognition and the therapeutic potential of FNDC5/irisin in AD.

Journal ArticleDOI
TL;DR: A simple centrifugation‐based filtration protocol is described for the isolation, quantification and assessment of the distribution ofα‐syn monomers, oligomers and fibrils, in heterogeneous α‐syn samples of increasing complexity, which could contribute to improving the reproducibility of experiments aimed at elucidating the structural basis of α‐ syn aggregation, seeding activity, toxicity and pathology spreading.
Abstract: Increasing evidence suggests that the process of alpha-synuclein (α-syn) aggregation from monomers into amyloid fibrils and Lewy bodies, via oligomeric intermediates plays an essential role in the pathogenesis of different synucleinopathies, including Parkinson's disease (PD), multiple system atrophy and dementia with Lewy bodies (DLB). However, the nature of the toxic species and the mechanisms by which they contribute to neurotoxicity and disease progression remain elusive. Over the past two decades, significant efforts and resources have been invested in studies aimed at identifying and targeting toxic species along the pathway of α-syn fibrillization. Although this approach has helped to advance the field and provide insights into the biological properties and toxicity of different α-syn species, many of the fundamental questions regarding the role of α-syn aggregation in PD remain unanswered, and no therapeutic compounds targeting α-syn aggregates have passed clinical trials. Several factors have contributed to this slow progress, including the complexity of the aggregation pathways and the heterogeneity and dynamic nature of α-syn aggregates. In the majority of experiment, the α-syn samples used contain mixtures of α-syn species that exist in equilibrium and their ratio changes upon modifying experimental conditions. The failure to quantitatively account for the distribution of different α-syn species in different studies has contributed not only to experimental irreproducibility but also to misinterpretation of results and misdirection of valuable resources. Towards addressing these challenges and improving experimental reproducibility in Parkinson's research, we describe here a simple centrifugation-based filtration protocol for the isolation, quantification and assessment of the distribution of α-syn monomers, oligomers and fibrils, in heterogeneous α-syn samples of increasing complexity. The protocol is simple, does not require any special instrumentation and can be performed rapidly on multiple samples using small volumes. Here, we present and discuss several examples that illustrate the applications of this protocol and how it could contribute to improving the reproducibility of experiments aimed at elucidating the structural basis of α-syn aggregation, seeding activity, toxicity and pathology spreading. This protocol is applicable, with slight modifications, to other amyloid-forming proteins.

Journal ArticleDOI
TL;DR: High‐spatial resolution matrix‐assisted laser desorption/ionization imaging mass spectrometry study in combination with (immuno) fluorescence staining of 5xFAD mouse brain provides new understanding of morphological, molecular and immune signatures of Aβ plaque pathology‐associated myelin lipid loss and myelin degeneration in a brain region‐specific manner.
Abstract: There is emerging evidence that amyloid beta (Aβ) aggregates forming neuritic plaques lead to impairment of the lipid-rich myelin sheath and glia. In this study, we examined focal myelin lipid alterations and the disruption of the myelin sheath associated with amyloid plaques in a widely used familial Alzheimer's disease (AD) mouse model; 5xFAD. This AD mouse model has Aβ42 peptide-rich plaque deposition in the brain parenchyma. Matrix-assisted laser desorption/ionization imaging mass spectrometry of coronal brain tissue sections revealed focal Aβ plaque-associated depletion of multiple myelin-associated lipid species including sulfatides, galactosylceramides, and specific plasmalogen phopshatidylethanolamines in the hippocampus, cortex, and on the edges of corpus callosum. Certain phosphatidylcholines abundant in myelin were also depleted in amyloid plaques on the edges of corpus callosum. Further, lysophosphatidylethanolamines and lysophosphatidylcholines, implicated in neuroinflammation, were found to accumulate in amyloid plaques. Double staining of the consecutive sections with fluoromyelin and amyloid-specific antibody revealed amyloid plaque-associated myelin sheath disruption on the edges of the corpus callosum which is specifically correlated with plaque-associated myelin lipid loss only in this region. Further, apolipoprotein E, which is implicated in depletion of sulfatides in AD brain, is deposited in all the Aβ plaques which suggest apolipoprotein E might mediate sulfatide depletion as a consequence of an immune response to Aβ deposition. This high-spatial resolution matrix-assisted laser desorption/ionization imaging mass spectrometry study in combination with (immuno) fluorescence staining of 5xFAD mouse brain provides new understanding of morphological, molecular and immune signatures of Aβ plaque pathology-associated myelin lipid loss and myelin degeneration in a brain region-specific manner. Read the Editorial Highlight for this article on page 7.

Journal ArticleDOI
TL;DR: In TBI mice, RvD1 significantly ameliorated cognitive impairment, suppressed gliosis and alleviated neuronal loss in the hippocampus, and was shown to increase the expression of brain-derived neurotrophic factor (BDNF) and glutamate aspartate transporter (GLAST) inThe hippocampus following TBI, which indicates a possible way by which R vD1 increases the supportive function of astrocytes.
Abstract: Cognitive impairment is one of the most common and devastating neuropsychiatric sequelae after traumatic brain injury (TBI), and hippocampal neuronal survival plays a causal role in this pathological process. Resolvin D1 (RvD1), an important endogenous specialized pro-resolving mediator, has recently been reported to exert a potent protective effect on mitochondria. This suggests that RvD1 may suppress neuroinflammation and protect astrocytic mitochondria at the same time to play further neuroprotective roles. C57BL/6 mice subjected to TBI using a controlled cortical impact device were used for in vivo experiments. Cultured primary mouse astrocytes and an N2a mouse neuroblastoma cell line were used for in vitro experiments. In TBI mice, RvD1 significantly ameliorated cognitive impairment, suppressed gliosis and alleviated neuronal loss in the hippocampus. To explore the mechanism underlying this activity, we verified that RvD1 can induce a higher level of mitophagy to remove damaged mitochondria and eliminate extra mitochondria-derived reactive oxygen species (mitoROS) by activating ALX4/FPR2 receptors in astrocytes. In an in vitro model, we further confirmed that RvD1 can protect mitochondrial morphology and membrane potential in astrocytes and thereby enhance the survival of neurons. Meanwhile, RvD1 was also shown to increase the expression of brain-derived neurotrophic factor and glutamate aspartate transporter in the hippocampus following TBI, which indicates a possible way by which RvD1 increases the supportive function of astrocytes. These findings suggest that RvD1 may be a potent therapeutic option for ameliorating cognitive impairment following TBI by controlling neuroinflammation and protecting astrocytic mitochondria.

Journal ArticleDOI
Zhuo Li1, Hua Zhu1, Yaxi Guo1, Xiaopeng Du1, Chuan Qin1 
TL;DR: Results from this study showed that changes in intestinal microbiota were correlated with impairment of cognitive function and might promote amyloid deposition by stimulating the MAPK signalling pathway in the brain.
Abstract: Gut microbiota, comprising a vast number of microorganism species with complex metagenome, are known to be associated with Alzheimer's disease (AD) and amyloid deposition. However, studies related to gut microbiota have been mostly restricted to comparisons of amyloid deposits, while investigations on neurobehavioral changes and the pathogenesis of AD are limited. Therefore, we aimed to identify the relationship between changes in the intestinal microbiome and the pathogenesis of AD. APPswe /PS1ΔE9 (PAP) transgenic mice and wild-type (WT) mice of different age groups were used. The composition of intestinal bacterial communities in the mice was determined by 16S ribosomal RNA sequencing (16S rRNA Seq), and the Y maze was used to measure cognitive function. Transcriptome sequencing (RNA Seq) and Gene Expression Omnibus (GEO) database (GSE 36980) were used to filter differentially expressed genes (DEGs) between specific pathogen-free (SPF) and germ-free (GF) mice. Quantitative reverse-transcriptase PCR (qRT-PCR) and western blot (WB) were used to verify the results. We found that the intestinal microbiota was significantly different between 5-month-old PAP and WT mice and the cognition of SPF PAP mice was diminished compared to GF PAP and SPF WT mice. DEGs in 5-month-old SPF and GF mice were enriched in the MAPK signalling pathway, and expression of amyloid precursor protein and amyloid deposition increased in 5-month-old SPF PAP mice. Results from this study showed that changes in intestinal microbiota were correlated with impairment of cognitive function and might promote amyloid deposition by stimulating the MAPK signalling pathway in the brain.

Journal ArticleDOI
TL;DR: These mechanisms work in concert to influence the timing and magnitude of striatal dopamine signaling, independent of action potential activity at the level of dopaminergic cell bodies in the midbrain, thereby providing a parallel pathway by which dopamine can be modulated.
Abstract: Regulation of axonal dopamine release by local microcircuitry is at the hub of several biological processes that govern the timing and magnitude of signaling events in reward-related brain regions. An important characteristic of dopamine release from axon terminals in the striatum is that it is rapidly modulated by local regulatory mechanisms. These processes can occur via homosynaptic mechanisms-such as presynaptic dopamine autoreceptors and dopamine transporters - as well heterosynaptic mechanisms such as retrograde signaling from postsynaptic cholinergic and dynorphin systems, among others. Additionally, modulation of dopamine release via diffusible messengers, such as nitric oxide and hydrogen peroxide, allows for various metabolic factors to quickly and efficiently regulate dopamine release and subsequent signaling. Here we review how these mechanisms work in concert to influence the timing and magnitude of striatal dopamine signaling, independent of action potential activity at the level of dopaminergic cell bodies in the midbrain, thereby providing a parallel pathway by which dopamine can be modulated. Understanding the complexities of local regulation of dopamine signaling is required for building comprehensive frameworks of how activity throughout the dopamine system is integrated to drive signaling and control behavior.

Journal ArticleDOI
TL;DR: The aim of this review is to summarize the current evidence regarding the roles of Panx1 in the CNS, with emphasis on how putative signalling properties and activation mechanisms of this channel contribute to various physiological and pathophysiological processes.
Abstract: Pannexin-1 (Panx1) is a large pore membrane channel with unique conduction properties ranging from non-selective ion permeability to the extracellular release of signalling molecules. The release of ATP by Panx1 has been particularly well-characterized with implications in purine signalling across a variety of biological contexts. Panx1 activity is also important in inflammasome formation and the secretion of pro-inflammatory molecules such as interleukin-1β. Within the central nervous system (CNS), Panx1 is expressed on both neurons and glia, and is thought to mediate crosstalk between these cells. A growing body of literature now supports the pathological activity of Panx1 in contributing to disease processes including seizure, stroke, migraine headache and chronic pain. Emerging evidence also reveals a physiological function of Panx1 in regulating neural stem cell survival, neuronal maturation and synaptic plasticity, with possible relevance to normal cognitive functioning. The aim of this review is to summarize the current evidence regarding the roles of Panx1 in the CNS, with emphasis on how putative signalling properties and activation mechanisms of this channel contribute to various physiological and pathophysiological processes.

Journal ArticleDOI
TL;DR: Comparative CSF proteomic analysis in adult SMA patients before and after treatment with nusinersen‐identified subgroups and treatment‐related changes and may therefore be suitable for diagnostic and predictive analyses.
Abstract: Promising results from recent clinical trials on the approved antisense oligonucleotide nusinersen in pediatric patients with 5q-linked spinal muscular atrophy (SMA) still have to be confirmed in adult patients but are hindered by a lack of sensitive biomarkers that indicate an early therapeutic response. Changes in the overall neurochemical composition of cerebrospinal fluid (CSF) under therapy may yield additive diagnostic and predictive information. With this prospective proof-of-concept and feasibility study, we evaluated non-targeted CSF proteomic profiles by mass spectrometry along with basic CSF parameters of 10 adult patients with SMA types 2 or 3 before and after 10 months of nusinersen therapy, in comparison with 10 age- and gender-matched controls. These data were analyzed by bioinformatics and correlated with clinical outcomes assessed by the Hammersmith Functional Rating Scale Expanded (HFMSE). CSF proteomic profiles of SMA patients differed from controls. Two groups of SMA patients were identified based on unsupervised clustering. These groups differed in age and expression of proteins related to neurodegeneration and neuroregeneration. Intraindividual CSF differences in response to nusinersen treatment varied between patients who clinically improved and those who did not. Data are available via ProteomeXchange with identifier PXD016757. Comparative CSF proteomic analysis in adult SMA patients before and after treatment with nusinersen-identified subgroups and treatment-related changes and may therefore be suitable for diagnostic and predictive analyses.

Journal ArticleDOI
TL;DR: An Aβ‐mediated deleterious synaptic mechanism that modifies the induction threshold for hippocampal LTP/LTD and underlies memory alterations observed in amyloidosis models is described.
Abstract: Hippocampal synaptic plasticity disruption by amyloid-β (Aβ) peptides + thought to be responsible for learning and memory impairments in Alzheimer's disease (AD) early stage. Failures in neuronal excitability maintenance seems to be an underlying mechanism. G-protein-gated inwardly rectifying potassium (GirK) channels control neural excitability by hyperpolarization in response to many G-protein-coupled receptors activation. Here, in early in vitro and in vivo amyloidosis mouse models, we study whether GirK channels take part of the hippocampal synaptic plasticity impairments generated by Aβ1-42 . In vitro electrophysiological recordings from slices showed that Aβ1-42 alters synaptic plasticity by switching high-frequency stimulation (HFS) induced long-term potentiation (LTP) to long-term depression (LTD), which led to in vivo hippocampal-dependent memory deficits. Remarkably, selective pharmacological activation of GirK channels with ML297 rescued both HFS-induced LTP and habituation memory from Aβ1-42 action. Moreover, when GirK channels were specifically blocked by Tertiapin-Q, their activation with ML297 failed to rescue LTP from the HFS-dependent LTD induced by Aβ1-42 . On the other hand, the molecular analysis of the recorded slices by western blot showed that the expression of GIRK1/2 subunits, which form the prototypical GirK channel in the hippocampus, was not significantly regulated by Aβ1-42 . However, immunohistochemical examination of our in vivo amyloidosis model showed Aβ1-42 to down-regulate hippocampal GIRK1 subunit expression. Together, our results describe an Aβ-mediated deleterious synaptic mechanism that modifies the induction threshold for hippocampal LTP/LTD and underlies memory alterations observed in amyloidosis models. In this scenario, GirK activation assures memory formation by preventing the transformation of HFS-induced LTP into LTD.

Journal ArticleDOI
TL;DR: This study utilized the traumatic injury‐preconditioned secretome to amplify neurogenesis and improve cognitive recovery, suggesting this method may be a novel and safer candidate for nerve repair.
Abstract: Traumatic brain injury (TBI) is a dominant cause of death and permanent disability worldwide. Although TBI could significantly increase the proliferation of adult neural stem cells in the hippocampus, the survival and maturation of newborn cells is markedly low. Increasing evidence suggests that the secretome derived from mesenchymal stem cells (MSCs) would be an ideal alternative to MSC transplantation. The successive and microenvironmentally responsive secretion in MSCs may be critical for the functional benefits provided by transplanted MSCs after TBI. Therefore, it is reasonable to hypothesize that the signaling molecules secreted in response to local tissue damage can further facilitate the therapeutic effect of the MSC secretome. To simulate the complex microenvironment in the injured brain well, we used traumatically injured brain tissue extracts to pretreat umbilical cord mesenchymal stem cells (UCMSCs) in vitro and stereotaxically injected the secretome from traumatic injury-preconditioned UCMSCs into the dentate gyrus of the hippocampus in a rat severe TBI model. The results revealed that compared with the normal secretome, the traumatic injury-preconditioned secretome could significantly further promote the differentiation, migration, and maturation of newborn cells in the dentate gyrus and ultimately improve cognitive function after TBI. Cytokine antibody array suggested that the increased benefits of secretome administration were attributable to the newly produced proteins and up-regulated molecules from the MSC secretome preconditioned by a traumatically injured microenvironment. Our study utilized the traumatic injury-preconditioned secretome to amplify neurogenesis and improve cognitive recovery, suggesting this method may be a novel and safer candidate for nerve repair. Cover Image for this issue: doi: 10.1111/jnc.14741.

Journal ArticleDOI
TL;DR: Results indicate that up‐regulation of miRNA‐9‐5p alleviates BBB damage and neuroinflammatory responses by activating the Hedgehog pathway and inhibiting NF‐κB/MMP‐9 pathway, which promotes the recovery of neurological function after TBI.
Abstract: The level of microRNA-9-5p (miRNA-9-5p) in brain tissues is significantly changed after traumatic brain injury (TBI). However, the effect of miRNA-9-5p for brain function in TBI has not been elucidated. In this study, a controlled cortical impact model was used to induce TBI in Sprague-Dawley rats, and an oxygen glucose deprivation model was used to mimic the pathological state in vitro. Brain microvascular endothelial cells (BMECs) and astrocytes were extracted from immature Sprague-Dawley rats and cocultured to reconstruct blood-brain barrier (BBB) in vitro. The results show that the level of miRNA-9-5p was significantly increased in brain tissues after TBI, and up-regulation of miRNA9-5p contributed to the recovery of neurological function. Up-regulation of miRNA-9-5p with miRNA agomir may significantly alleviate apoptosis, neuroinflammation, and BBB damage in rats after TBI. Moreover, a dual luciferase reporter assay confirmed that miRNA-9-5p is a post-transcriptional modulator of Ptch-1. In in vitro experiments, the results confirmed that up-regulation of miRNA-9-5p with miRNA mimic alleviates cellular apoptosis, inflammatory response, and BBB damage mainly by inhibiting Ptch-1. In addition, we found that the activation of Hedgehog pathway was accompanied by inhibition of NF-κB/MMP-9 pathway in the BMECs treated with miRNA-9-5p mimic. Taken together, these results indicate that up-regulation of miRNA-9-5p alleviates BBB damage and neuroinflammatory responses by activating the Hedgehog pathway and inhibiting NF-κB/MMP-9 pathway, which promotes the recovery of neurological function after TBI.

Journal ArticleDOI
TL;DR: It is found that artificially replicating the abnormalities in miR-124/PTPN1 signaling induced AD-like tau pathology in the hippocampus of wild-type mice, including hyperphosphorylation at multiple sites, insolubility and somadendritic aggregation, as well as learning/memory deficits.
Abstract: MicroRNAs have been implicated in diverse physiological and pathological processes. We previously reported that aberrant microRNA-124 (miR-124)/non-receptor-type protein phosphatase 1 (PTPN1) signaling plays an important role in the synaptic disorders associated with Alzheimer's disease (AD). In this study, we further investigated the potential role of miR-124/PTPN1 in the tau pathology of AD. We first treated the mice with intra-hippocampal stereotactic injections. Then, we used quantitative real-time reverse transcription PCR (qRT-PCR) to detect the expression of microRNAs. Western blotting was used to measure the level of PTPN1, the level of tau protein, the phosphorylation of tau at AD-related sites, and alterations in the activity of glycogen synthase kinase 3β (GSK-3β) and protein phosphatase 2 (PP2A). Immunohistochemistry was also used to detect changes in tau phosphorylation levels at AD-related sites and somadendritic aggregation. Soluble and insoluble tau protein was separated by 70% formic acid (FA) extraction to examine tau solubility. Finally, behavioral experiments (including the Morris water maze, fear conditioning, and elevated plus maze) were performed to examine learning and memory ability and emotion-related behavior. We found that artificially replicating the abnormalities in miR-124/PTPN1 signaling induced AD-like tau pathology in the hippocampus of wild-type mice, including hyperphosphorylation at multiple sites, insolubility and somadendritic aggregation, as well as learning/memory deficits. We also found that disruption of miR-124/PTPN1 signaling was caused by the loss of RE1-silencing transcription factor protein, which can be initiated by Aβ insults or oxidative stress, as observed in the brains of P301S mice. Correcting the deregulation of miR-124/PTPN1 signaling rescued the tau pathology and learning/memory impairments in the P301S mice. We also found that miR-124/PTPN1 abnormalities induced activation of glycogen synthase kinase 3 (GSK-3) and inactivation of protein phosphatase 2A (PP2A) by promoting tyrosine phosphorylation, implicating an imbalance in tau kinase/phosphatase. Thus, targeting the miR-124/PTPN1 signaling pathway is a promising therapeutic strategy for AD.

Journal ArticleDOI
TL;DR: The results provide a novel 3D atlas of mouse nasal cavity anatomy and show that RSV can infect olfactory sensory neurons giving access to the central nervous system by entering the Olfactory bulb.
Abstract: The olfactory mucosa, where the first step of odor detection occurs, is a privileged pathway for environmental toxicants and pathogens toward the central nervous system. Indeed, some pathogens can infect olfactory sensory neurons including their axons projecting to the olfactory bulb allowing them to bypass the blood-brain barrier and reach the central nervous system (CNS) through the so-called olfactory pathway. The respiratory syncytial virus (RSV) is a major respiratory tract pathogen but there is growing evidence that RSV may lead to CNS impairments. However, the mechanisms involved in RSV entering into the CNS have been poorly described. In this study, we wanted to explore the capacity of RSV to reach the CNS via the olfactory pathway and to better characterize RSV cellular tropism in the nasal cavity. We first explored the distribution of RSV infectious sites in the nasal cavity by in vivo bioluminescence imaging and a tissue clearing protocol combined with deep-tissue imaging and 3D image analyses. This whole tissue characterization was confirmed with immunohistochemistry and molecular biology approaches. Together, our results provide a novel 3D atlas of mouse nasal cavity anatomy and show that RSV can infect olfactory sensory neurons giving access to the central nervous system by entering the olfactory bulb. Cover Image for this issue: doi: 10.1111/jnc.14765.

Journal ArticleDOI
TL;DR: Results show that acute inhibition of MMP‐9 activity improved evoked synchronization to auditory stimuli and ameliorated mouse behavioral deficits, and may serve as a candidate therapeutic for reversing sensory hypersensitivity in FXS and possibly other ASDs.
Abstract: Individuals with Fragile X Syndrome (FXS) and autism spectrum disorder (ASD) exhibit cognitive impairments, social deficits, increased anxiety, and sensory hyperexcitability. Previously, we showed that elevated levels of matrix metalloproteinase-9 (MMP-9) may contribute to abnormal development of parvalbumin (PV) interneurons and perineuronal nets (PNNs) in the developing auditory cortex (AC) of Fmr1 knock-out (KO) mice, which likely underlie auditory hypersensitivity. Thus, MMP-9 may serve as a potential target for treatment of auditory hypersensitivity in FXS. Here, we used the MMP-2/9 inhibitor, SB-3CT, to pharmacologically inhibit MMP-9 activity during a specific developmental period and to test whether inhibition of MMP-9 activity reverses neural oscillation deficits and behavioral impairments by enhancing PNN formation around PV cells in Fmr1 KO mice. Electroencephalography (EEG) was used to measure resting state and sound-evoked electrocortical activity in auditory and frontal cortices of postnatal day (P)22-23 male mice before and one-day after treatment with SB-3CT (25 mg/kg) or vehicle. At P27-28, animal behaviors were tested to measure the effects of the treatment on anxiety and hyperactivity. Results show that acute inhibition of MMP-9 activity improved evoked synchronization to auditory stimuli and ameliorated mouse behavioral deficits. MMP-9 inhibition enhanced PNN formation, increased PV levels and TrkB phosphorylation yet reduced Akt phosphorylation in the AC of Fmr1 KO mice. Our results show that MMP-9 inhibition during early postnatal development is beneficial in reducing some auditory processing deficits in the FXS mouse model and may serve as a candidate therapeutic for reversing sensory hypersensitivity in FXS and possibly other ASDs.

Journal ArticleDOI
TL;DR: It is found that extracellular addition of tau induced a gradual loss of neurons over 1–2 days, without neuronal necrosis or apoptosis, but accompanied by proliferation of microglia in the neuronal‐glial co‐cultures.
Abstract: Tau is a microtubule-associated protein, found at high levels in neurons, and its aggregation is associated with neurodegeneration. Recently, it was found that tau can be actively secreted from neurons, but the effects of extracellular tau on neuronal viability are unclear. In this study, we investigated whether extracellular tau2N4R can cause neurotoxicity in primary cultures of rat brain neurons and glial cells. Cell cultures were examined for neuronal loss, death, and phosphatidylserine exposure, as well as for microglial phagocytosis by fluorescence microscopy. Aggregation of tau2N4R was assessed by atomic force microscopy. We found that extracellular addition of tau induced a gradual loss of neurons over 1-2 days, without neuronal necrosis or apoptosis, but accompanied by proliferation of microglia in the neuronal-glial co-cultures. Tau addition caused exposure of the 'eat-me' signal phosphatidylserine on the surface of living neurons, and this was prevented by elimination of the microglia or by inhibition of neutral sphingomyelinase. Tau also increased the phagocytic activity of pure microglia, and this was blocked by inhibitors of neutral sphingomyelinase or protein kinase C. The neuronal loss induced by tau was prevented by inhibitors of neutral sphingomyelinase, protein kinase C or the phagocytic receptor MerTK, or by eliminating microglia from the cultures. The data suggest that extracellular tau induces primary phagocytosis of stressed neurons by activated microglia, and identifies multiple ways in which the neuronal loss induced by tau can be prevented.

Journal ArticleDOI
TL;DR: Results point to bidirectional interactions between the two proteins: while PrPC mediates the entrance of tau fibrils in cells, PrPSc buildup is greatly reduced in their presence, possibly because of an impairment in the prion conversion process.
Abstract: Tauopathies are prevalent, invariably fatal brain diseases for which no cure is available. Tauopathies progressively affect the brain through cell-to-cell transfer of tau protein amyloids, yet the spreading mechanisms remain unknown. Here we show that the cellular prion protein (PrPC ) facilitates the uptake of tau aggregates by cultured cells, possibly by acting as an endocytic receptor. In mouse neuroblastoma cells, pull-down experiments revealed that tau amyloids bind to PrPC . Confocal images of both wild-type and PrPC -knockout N2a cells treated with fluorescently labeled synthetic tau fibrils showed that the internalization was reduced in isogenic cells devoid of the gene encoding PrPC . Pre-treatment of the same cells with antibodies against N-proximal epitopes of PrPC impaired the binding of tau amyloids and decreased their uptake. Surprisingly, exposure of chronically prion-infected cells to tau amyloids reduced the accumulation of aggregated prion protein and this effect lasted for more than 72 hr after amyloid removal. These results point to bidirectional interactions between the two proteins: while PrPC mediates the entrance of tau fibrils in cells, PrPSc buildup is greatly reduced in their presence, possibly because of an impairment in the prion conversion process.

Journal ArticleDOI
TL;DR: The cellular models that are presently available for discovering and testing drugs capable of blocking the propagation of prions are summarized and challenges that remain on the path towards developing therapies for prion disease are highlighted.
Abstract: Prions, which cause fatal neurodegenerative disorders such as Creutzfeldt-Jakob disease, are misfolded and infectious protein aggregates. Currently, there are no treatments available to halt or even delay the progression of prion disease in the brain. The infectious nature of prions has resulted in animal paradigms that accurately recapitulate all aspects of prion disease, and these have proven to be instrumental for testing the efficacy of candidate therapeutics. Nonetheless, infection of cultured cells with prions provides a much more powerful system for identifying molecules capable of interfering with prion propagation. Certain lines of cultured cells can be chronically infected with various types of mouse prions, and these models have been used to unearth candidate anti-prion drugs that are at least partially efficacious when administered to prion-infected rodents. However, these studies have also revealed that not all types of prions are equal, and that drugs active against mouse prions are not necessarily effective against prions from other species. Despite some recent progress, the number of cellular models available for studying non-mouse prions remains limited. In particular, human prions have proven to be particularly challenging to propagate in cultured cells, which has severely hindered the discovery of drugs for Creutzfeldt-Jakob disease. In this review, we summarize the cellular models that are presently available for discovering and testing drugs capable of blocking the propagation of prions and highlight challenges that remain on the path towards developing therapies for prion disease.