Author
Tetsu Tanaka
Other affiliations: NTT DoCoMo, Tokyo Medical and Dental University, Fujitsu ...read more
Bio: Tetsu Tanaka is an academic researcher from Tohoku University. The author has contributed to research in topic(s): Wafer & Chip. The author has an hindex of 38, co-authored 406 publication(s) receiving 10375 citation(s). Previous affiliations of Tetsu Tanaka include NTT DoCoMo & Tokyo Medical and Dental University.
Topics: Wafer, Chip, Wafer bonding, Interposer, Flip chip
Papers published on a yearly basis
Papers
More filters
TL;DR: Bacillus subtilis is the best-characterized member of the Gram-positive bacteria, indicating that bacteriophage infection has played an important evolutionary role in horizontal gene transfer, in particular in the propagation of bacterial pathogenesis.
Abstract: Bacillus subtilis is the best-characterized member of the Gram-positive bacteria. Its genome of 4,214,810 base pairs comprises 4,100 protein-coding genes. Of these protein-coding genes, 53% are represented once, while a quarter of the genome corresponds to several gene families that have been greatly expanded by gene duplication, the largest family containing 77 putative ATP-binding transport proteins. In addition, a large proportion of the genetic capacity is devoted to the utilization of a variety of carbon sources, including many plant-derived molecules. The identification of five signal peptidase genes, as well as several genes for components of the secretion apparatus, is important given the capacity of Bacillus strains to secrete large amounts of industrially important enzymes. Many of the genes are involved in the synthesis of secondary metabolites, including antibiotics, that are more typically associated with Streptomyces species. The genome contains at least ten prophages or remnants of prophages, indicating that bacteriophage infection has played an important evolutionary role in horizontal gene transfer, in particular in the propagation of bacterial pathogenesis.
3,662 citations
University College London1, University of Cambridge2, University of Cologne3, Leiden University4, Utrecht University5, National Institutes of Health6, University of Pennsylvania7, University of Glasgow8, University of Edinburgh9, Mayo Clinic10, University of London11, University of Bristol12, Cardiff University13, University of Oxford14, University of Ioannina15, University of Hamburg16, Lithuanian University of Health Sciences17, Jagiellonian University18, Russian Academy19, Karolinska Institutet20, Memorial Hospital of South Bend21, University of Groningen22, MedStar Washington Hospital Center23, Swansea University24, Brown University25, University of Iowa26, Harvard University27, University of Exeter28, University of North Carolina at Chapel Hill29, Boston University30, Medical Research Council31, University of California, San Diego32, University of Mississippi33, Fred Hutchinson Cancer Research Center34
TL;DR: IL6R blockade could provide a novel therapeutic approach to prevention of coronary heart disease that warrants testing in suitably powered randomised trials and could help to validate and prioritise novel drug targets or to repurpose existing agents and targets for new therapeutic uses.
Abstract: Findings In 40 studies including up to 133 449 individuals, an IL6R SNP (rs7529229) marking a non-synonymous IL6R variant (rs8192284; p.Asp358Ala) was associated with increased circulating log interleukin-6 concentration (increase per allele 9·45%, 95% CI 8·34–10·57) as well as reduced C-reactive protein (decrease per allele 8·35%, 95% CI 7·31–9·38) and fi brinogen concentrations (decrease per allele 0·85%, 95% CI 0·60–1·10). This pattern of eff ects was consistent with IL6R blockade from infusions of tocilizumab (4–8 mg/kg every 4 weeks) in patients with rheumatoid arthritis studied in randomised trials. In 25 458 coronary heart disease cases and 100 740 controls, the IL6R rs7529229 SNP was associated with a decreased odds of coronary heart disease events (per allele odds ratio 0·95, 95% CI 0·93–0·97, p=1·53×10
733 citations
TL;DR: In this paper, a scaling theory for double-gate SOI MOSFETs is presented, which gives guidance for device design that maintains a sub-threshold factor for a given gate length.
Abstract: A scaling theory for double-gate SOI MOSFETs, which gives guidance for device design (silicon thickness t/sub si/; gate oxide thickness t/sub ox/) that maintains a subthreshold factor for a given gate length is discussed. According to the theory, a device can be designed with a gate length of less than 0.1 mu m while maintaining the ideal subthreshold factor. This is verified numerically with a two-dimensional device simulator. >
515 citations
27 Feb 2009
TL;DR: The 3-D microprocessor test chip,3-D memorytest chip, 3- D image sensor chip, and 3-Ds artificial retina chip were successfully fabricated by using poly-Si TSV and tungsten (W/poly-Si) TSV technology.
Abstract: High density through silicon via (TSV) is a key in fabricating three-dimensional (3-D) large-scale integration (LSI). We have developed polycrystalline silicon (poly-Si) TSV technology and tungsten (W)/poly-Si TSV technology for 3-D integration. In the poly-Si TSV formation, low-pressure chemical vapor deposition poly-Si heavily doped with phosphorus was conformally deposited into the narrow and deep trench formed in a Si substrate after the surface of Si trench was thermally oxidized. In the W/poly-Si TSV formation, tungsten was deposited into the Si trench by atomic layer deposition method after the poly-Si deposition, where poly-Si was used as a liner layer for W deposition. The 3-D microprocessor test chip, 3-D memory test chip, 3-D image sensor chip, and 3-D artificial retina chip were successfully fabricated by using poly-Si TSV.
264 citations
01 Jan 2009
TL;DR: In this paper, a polycrystalline silicon (poly-Si) TSV technology and tungsten (W)/poly poly-Si TSV for 3D integration was developed.
Abstract: High density through silicon via (TSV) is a key in fabricating three-dimensional (3-D) large-scale integration (LSI). We have developed polycrystalline silicon (poly-Si) TSV technology and tungsten (W)/poly-Si TSV technology for 3-D integration. In the poly-Si TSV formation, low-pressure chem- ical vapor deposition poly-Si heavily doped with phosphorus was conformally deposited into the narrow and deep trench formed in a Si substrate after the surface of Si trench was thermally oxidized. In the W/poly-Si TSV formation, tungsten was deposited into the Si trench by atomic layer deposition method after the poly-Si deposition, where poly-Si was used as a liner layer for W deposition. The 3-D microprocessor test chip, 3-D memory test chip, 3-D image sensor chip, and 3-D artificial retina chip were successfully fabricated by using poly-Si TSV.
261 citations
Cited by
More filters
Journal Article•
28,684 citations
TL;DR: The complete genome sequence of the best-characterized strain of Mycobacterium tuberculosis, H37Rv, has been determined and analysed in order to improve the understanding of the biology of this slow-growing pathogen and to help the conception of new prophylactic and therapeutic interventions.
Abstract: Countless millions of people have died from tuberculosis, a chronic infectious disease caused by the tubercle bacillus. The complete genome sequence of the best-characterized strain of Mycobacterium tuberculosis, H37Rv, has been determined and analysed in order to improve our understanding of the biology of this slow-growing pathogen and to help the conception of new prophylactic and therapeutic interventions. The genome comprises 4,411,529 base pairs, contains around 4,000 genes, and has a very high guanine + cytosine content that is reflected in the biased amino-acid content of the proteins. M. tuberculosis differs radically from other bacteria in that a very large portion of its coding capacity is devoted to the production of enzymes involved in lipogenesis and lipolysis, and to two new families of glycine-rich proteins with a repetitive structure that may represent a source of antigenic variation.
7,464 citations
TL;DR: It is proposed that the size and complexity of the P. aeruginosa genome reflect an evolutionary adaptation permitting it to thrive in diverse environments and resist the effects of a variety of antimicrobial substances.
Abstract: Pseudomonas aeruginosa is a ubiquitous environmental bacterium that is one of the top three causes of opportunistic human infections. A major factor in its prominence as a pathogen is its intrinsic resistance to antibiotics and disinfectants. Here we report the complete sequence of P. aeruginosa strain PAO1. At 6.3 million base pairs, this is the largest bacterial genome sequenced, and the sequence provides insights into the basis of the versatility and intrinsic drug resistance of P. aeruginosa. Consistent with its larger genome size and environmental adaptability, P. aeruginosa contains the highest proportion of regulatory genes observed for a bacterial genome and a large number of genes involved in the catabolism, transport and efflux of organic compounds as well as four potential chemotaxis systems. We propose that the size and complexity of the P. aeruginosa genome reflect an evolutionary adaptation permitting it to thrive in diverse environments and resist the effects of a variety of antimicrobial substances.
3,968 citations
Brigham and Women's Hospital1, Novartis2, Baylor College of Medicine3, Federal University of São Paulo4, Technische Universität München5, University of Amsterdam6, St. John's University7, University of Pavol Jozef Šafárik8, McGill University9, First Faculty of Medicine, Charles University in Prague10, University of Szeged11, Iuliu Hațieganu University of Medicine and Pharmacy12, University of East Anglia13, Tohoku University14, Sahlgrenska University Hospital15
TL;DR: Antiinflammatory therapy targeting the interleukin‐1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid‐level lowering.
Abstract: BackgroundExperimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. MethodsWe conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. ResultsAt 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in t...
3,853 citations
TL;DR: Investigation of many newly identified gene products, including the 70 putative virulence factors, will greatly improve the understanding of the biology of staphylococci and the processes of infectious diseases caused by S aureus.
Abstract: Summary Background Staphylococcus aureus is one of the major causes of community-acquired and hospital-acquired infections. It produces numerous toxins including superantigens that cause unique disease entities such as toxic-shock syndrome and staphylococcal scarlet fever, and has acquired resistance to practically all antibiotics. Whole genome analysis is a necessary step towards future development of countermeasures against this organism. Methods Whole genome sequences of two related S aureus strains (N315 and Mu50) were determined by shot-gun random sequencing. N315 is a meticillin-resistant S aureus (MRSA) strain isolated in 1982, and Mu50 is an MRSA strain with vancomycin resistance isolated in 1997. The open reading frames were identified by use of GAMBLER and GLIMMER programs, and annotation of each was done with a BLAST homology search, motif analysis, and protein localisation prediction. The entire genome sequences of S aureus N315 and Mu50 have been deposited in the DDBJ/Genbank/EMBL database under the accession numbers AP003129-AP003138 and AP003358-AP003366, respectively. The plasmid sequences of S aureus N315 and Mu50 have been deposited in the DDBJ/Genbank/EMBL database under the accession numbers AP003139 and AP003367, respectively.
1,935 citations