scispace - formally typeset
Search or ask a question

Showing papers in "Micromachines in 2020"


Journal ArticleDOI
TL;DR: A point-of-care device for the rapid detection of the 2019 novel Coronavirus (SARS-CoV-2) is crucial and urgently needed, as well as factors for the preparedness and response to the outbreak of the COVID-19.
Abstract: We believe a point-of-care (PoC) device for the rapid detection of the 2019 novel Coronavirus (SARS-CoV-2) is crucial and urgently needed. With this perspective, we give suggestions regarding a potential candidate for the rapid detection of the coronavirus disease 2019 (COVID-19), as well as factors for the preparedness and response to the outbreak of the COVID-19.

248 citations


Journal ArticleDOI
TL;DR: An extensive overview of Microelectronechanical Systems (MEMS) scanning mirrors specifically for applications in LiDAR systems is presented, and a figure of merit (FoM) is defined for MEMS mirrors inLiDAR scanners in terms of aperture size, field of view (foV) and resonant frequency.
Abstract: In recent years, Light Detection and Ranging (LiDAR) has been drawing extensive attention both in academia and industry because of the increasing demand for autonomous vehicles. LiDAR is believed to be the crucial sensor for autonomous driving and flying, as it can provide high-density point clouds with accurate three-dimensional information. This review presents an extensive overview of Microelectronechanical Systems (MEMS) scanning mirrors specifically for applications in LiDAR systems. MEMS mirror-based laser scanners have unrivalled advantages in terms of size, speed and cost over other types of laser scanners, making them ideal for LiDAR in a wide range of applications. A figure of merit (FoM) is defined for MEMS mirrors in LiDAR scanners in terms of aperture size, field of view (FoV) and resonant frequency. Various MEMS mirrors based on different actuation mechanisms are compared using the FoM. Finally, a preliminary assessment of off-the-shelf MEMS scanned LiDAR systems is given.

182 citations


Journal ArticleDOI
TL;DR: A comprehensive understanding of the current status and challenges of AM path planning is given and path planning strategies in three categories are reviewed: improving printed qualities, saving materials/time and achieving objective printed properties.
Abstract: Additive manufacturing (AM) is the process of joining materials layer by layer to fabricate products based on 3D models Due to the layer-by-layer nature of AM, parts with complex geometries, integrated assemblies, customized geometry or multifunctional designs can now be manufactured more easily than traditional subtractive manufacturing Path planning in AM is an important step in the process of manufacturing products The final fabricated qualities, properties, etc, will be different when using different path strategies, even using the same AM machine and process parameters Currently, increasing research studies have been published on path planning strategies with different aims Due to the rapid development of path planning in AM and various newly proposed strategies, there is a lack of comprehensive reviews on this topic Therefore, this paper gives a comprehensive understanding of the current status and challenges of AM path planning This paper reviews and discusses path planning strategies in three categories: improving printed qualities, saving materials/time and achieving objective printed properties The main findings of this review include: new path planning strategies can be developed by combining some of the strategies in literature with better performance; a path planning platform can be developed to help select the most suitable path planning strategy with required properties; research on path planning considering energy consumption can be carried out in the future; a benchmark model for testing the performance of path planning strategies can be designed; the trade-off among different fabricated properties can be considered as a factor in future path planning design processes; and lastly, machine learning can be a powerful tool to further improve path planning strategies in the future

164 citations


Journal ArticleDOI
Yan Liu1, Yao Cai1, Yi Zhang1, Alexander Tovstopyat1, Sheng Liu1, Chengliang Sun1 
TL;DR: By looking into the challenges of high frequency, wide bandwidth, miniaturization, and high power level, this work provides clues to specific materials, structure designs, and RF integration technologies for BAW resonators.
Abstract: With the rapid commercialization of fifth generation (5G) technology in the world, the market demand for radio frequency (RF) filters continues to grow Acoustic wave technology has been attracting great attention as one of the effective solutions for achieving high-performance RF filter operations while offering low cost and small device size Compared with surface acoustic wave (SAW) resonators, bulk acoustic wave (BAW) resonators have more potential in fabricating high- quality RF filters because of their lower insertion loss and better selectivity in the middle and high frequency bands above 25 GHz Here, we provide a comprehensive review about BAW resonator researches, including materials, structure designs, and characteristics The basic principles and details of recently proposed BAW resonators are carefully investigated The materials of poly-crystalline aluminum nitride (AlN), single crystal AlN, doped AlN, and electrode are also analyzed and compared Common approaches to enhance the performance of BAW resonators, suppression of spurious mode, low temperature sensitivity, and tuning ability are introduced with discussions and suggestions for further improvement Finally, by looking into the challenges of high frequency, wide bandwidth, miniaturization, and high power level, we provide clues to specific materials, structure designs, and RF integration technologies for BAW resonators

128 citations


Journal ArticleDOI
TL;DR: Applications of LOC devices as a versatile tool for POC applications are focused on, which include current progress in OOC platforms towards body-on-a-chip, and concluding remarks and future perspectives are provided.
Abstract: Following the advancements in microfluidics and lab-on-a-chip (LOC) technologies, a novel biomedical application for microfluidic based devices has emerged in recent years and microengineered cell culture platforms have been created. These micro-devices, known as organ-on-a-chip (OOC) platforms mimic the in vivo like microenvironment of living organs and offer more physiologically relevant in vitro models of human organs. Consequently, the concept of OOC has gained great attention from researchers in the field worldwide to offer powerful tools for biomedical researches including disease modeling, drug development, etc. This review highlights the background of biochip development. Herein, we focus on applications of LOC devices as a versatile tool for POC applications. We also review current progress in OOC platforms towards body-on-a-chip, and we provide concluding remarks and future perspectives for OOC platforms for POC applications.

124 citations


Journal ArticleDOI
TL;DR: This perspective review focuses on graphene-based biosensors for quantitative detection of cancer-related biomarkers such as DNA, miRNA, small molecules and proteins by integrating with different signal outputting approaches including fluorescent, electrochemistry, surface plasmon resonance, surface enhanced Raman scattering, etc.
Abstract: The development of biosensors with high sensitivity and low-detection limits provides a new direction for medical and personal care. Graphene and graphene derivatives have been used to prepare various types of biosensors due to their excellent sensing performance (e.g., high specific surface area, extraordinary electronic properties, electron transport capabilities and ultrahigh flexibility). This perspective review focuses on graphene-based biosensors for quantitative detection of cancer-related biomarkers such as DNA, miRNA, small molecules and proteins by integrating with different signal outputting approaches including fluorescent, electrochemistry, surface plasmon resonance, surface enhanced Raman scattering, etc. The article also discussed their challenges and potential solutions along with future prospects.

112 citations


Journal ArticleDOI
TL;DR: The need for flexible antennas, materials, and processes used for fabricating the antennas, various material properties influencing antenna performance, and specific biomedical applications accompanied by the design considerations are focused on.
Abstract: The field of flexible antennas is witnessing an exponential growth due to the demand for wearable devices, Internet of Things (IoT) framework, point of care devices, personalized medicine platform, 5G technology, wireless sensor networks, and communication devices with a smaller form factor to name a few. The choice of non-rigid antennas is application specific and depends on the type of substrate, materials used, processing techniques, antenna performance, and the surrounding environment. There are numerous design innovations, new materials and material properties, intriguing fabrication methods, and niche applications. This review article focuses on the need for flexible antennas, materials, and processes used for fabricating the antennas, various material properties influencing antenna performance, and specific biomedical applications accompanied by the design considerations. After a comprehensive treatment of the above-mentioned topics, the article will focus on inherent challenges and future prospects of flexible antennas. Finally, an insight into the application of flexible antenna on future wireless solutions is discussed.

101 citations


Journal ArticleDOI
TL;DR: The working principles of several types of pressure sensors are briefly introduced, and the sizes, performances, manufacturing processes, structures, and materials of small pressure sensors used in the different fields are explained in detail, especially in the medical field.
Abstract: Miniature Microelectromechanical Systems (MEMS) pressure sensors possess various merits, such as low power consumption, being lightweight, having a small volume, accurate measurement in a space-limited region, low cost, little influence on the objects being detected. Accurate blood pressure has been frequently required for medical diagnosis. Miniature pressure sensors could directly measure the blood pressure and fluctuation in blood vessels with an inner diameter from 200 to 1000 m. Glaucoma is a group of eye diseases usually resulting from abnormal intraocular pressure. The implantable pressure sensor for real-time inspection would keep the disease from worsening; meanwhile, these small devices could alleviate the discomfort of patients. In addition to medical applications, miniature pressure sensors have also been used in the aerospace, industrial, and consumer electronics fields. To clearly illustrate the "miniature size", this paper focuses on miniature pressure sensors with an overall size of less than 2 mm × 2 mm or a pressure sensitive diaphragm area of less than 1 mm × 1 mm. In this paper, firstly, the working principles of several types of pressure sensors are briefly introduced. Secondly, the miniaturization with the development of the semiconductor processing technology is discussed. Thirdly, the sizes, performances, manufacturing processes, structures, and materials of small pressure sensors used in the different fields are explained in detail, especially in the medical field. Fourthly, problems encountered in the miniaturization of miniature pressure sensors are analyzed and possible solutions proposed. Finally, the probable development directions of miniature pressure sensors in the future are discussed.

98 citations


Journal ArticleDOI
TL;DR: An immersion printing technique is demonstrated to bioprint tissue organoids in 96-well plates to increase the throughput of 3D drug screening and validate several cancerous cell lines and sarcoma biospecimens for drug screening.
Abstract: The current drug development pipeline takes approximately fifteen years and $2.6 billion to get a new drug to market. Typically, drugs are tested on two-dimensional (2D) cell cultures and animal models to estimate their efficacy before reaching human trials. However, these models are often not representative of the human body. The 2D culture changes the morphology and physiology of cells, and animal models often have a vastly different anatomy and physiology than humans. The use of bioengineered human cell-based organoids may increase the probability of success during human trials by providing human-specific preclinical data. They could also be deployed for personalized medicine diagnostics to optimize therapies in diseases such as cancer. However, one limitation in employing organoids in drug screening has been the difficulty in creating large numbers of homogeneous organoids in form factors compatible with high-throughput screening (e.g., 96- and 384-well plates). Bioprinting can be used to scale up deposition of such organoids and tissue constructs. Unfortunately, it has been challenging to 3D print hydrogel bioinks into small-sized wells due to well–bioink interactions that can result in bioinks spreading out and wetting the well surface instead of maintaining a spherical form. Here, we demonstrate an immersion printing technique to bioprint tissue organoids in 96-well plates to increase the throughput of 3D drug screening. A hydrogel bioink comprised of hyaluronic acid and collagen is bioprinted into a viscous gelatin bath, which blocks the bioink from interacting with the well walls and provides support to maintain a spherical form. This method was validated using several cancerous cell lines, and then applied to patient-derived glioblastoma (GBM) and sarcoma biospecimens for drug screening.

90 citations


Journal ArticleDOI
Lirong Cheng1, Simei Mao1, Zhi Li1, Yaqi Han1, Hongyan Fu1 
TL;DR: Various methods are concluded to improve in-plane grating couplers performance, including coupling efficiency, polarization and wavelength sensitivity, starting from their fundamental theories and concepts.
Abstract: Silicon photonics is an enabling technology that provides integrated photonic devices and systems with low-cost mass manufacturing capability. It has attracted increasing attention in both academia and industry in recent years, not only for its applications in communications, but also in sensing. One important issue of silicon photonics that comes with its high integration density is an interface between its high-performance integrated waveguide devices and optical fibers or free-space optics. Surface grating coupler is a preferred candidate that provides flexibility for circuit design and reduces effort for both fabrication and alignment. In the past decades, considerable research efforts have been made on in-plane grating couplers to address their insufficiency in coupling efficiency, wavelength sensitivity and polarization sensitivity compared with out-of-plane edge-coupling. Apart from improved performances, new functionalities are also on the horizon for grating couplers. In this paper, we review the current research progresses made on grating couplers, starting from their fundamental theories and concepts. Then, we conclude various methods to improve their performance, including coupling efficiency, polarization and wavelength sensitivity. Finally, we discuss some emerging research topics on grating couplers, as well as practical issues such as testing, packaging and promising applications.

89 citations


Journal ArticleDOI
TL;DR: Recent major progresses in 4D printing are reviewed, including AM technologies for4D printing, stimulation method, materials and applications, and the current challenges and future prospects of 4D Printing were highlighted.
Abstract: Since the late 1980s, additive manufacturing (AM), commonly known as three-dimensional (3D) printing, has been gradually popularized. However, the microstructures fabricated using 3D printing is static. To overcome this challenge, four-dimensional (4D) printing which defined as fabricating a complex spontaneous structure that changes with time respond in an intended manner to external stimuli. 4D printing originates in 3D printing, but beyond 3D printing. Although 4D printing is mainly based on 3D printing and become an branch of additive manufacturing, the fabricated objects are no longer static and can be transformed into complex structures by changing the size, shape, property and functionality under external stimuli, which makes 3D printing alive. Herein, recent major progresses in 4D printing are reviewed, including AM technologies for 4D printing, stimulation method, materials and applications. In addition, the current challenges and future prospects of 4D printing were highlighted.

Journal ArticleDOI
TL;DR: The results show a two-dimensional micromixer of Tesla structure is recommended in the intermediate- and high-Re ranges, while two three-dimensionalmicromixers with two layers are recommend in the low-Re range due to their excellent mixing performance.
Abstract: A wide range of existing passive micromixers are reviewed, and quantitative analyses of ten typical passive micromixers were performed to compare their mixing indices, pressure drops, and mixing costs under the same axial length and flow conditions across a wide Reynolds number range of 0.01-120. The tested micromixers were selected from five types of micromixer designs. The analyses of flow and mixing were performed using continuity, Navier-Stokes and convection-diffusion equations. The results of the comparative analysis were presented for three different Reynolds number ranges: low-Re (Re ≤ 1), intermediate-Re (1 40) ranges, where the mixing mechanisms are different. The results show a two-dimensional micromixer of Tesla structure is recommended in the intermediate- and high-Re ranges, while two three-dimensional micromixers with two layers are recommended in the low-Re range due to their excellent mixing performance.

Journal ArticleDOI
TL;DR: Several hot applications based on these magnificent beams such as optical trapping, material processing, free-space long-distance self-healing beams, optical coherence tomography, superresolution, sharp focusing, polarization transformation, increased depth of focus, birefringence detection based on astigmatic transformed BB and encryption in optical communication are discussed.
Abstract: Diffraction is a phenomenon related to the wave nature of light and arises when a propagating wave comes across an obstacle. Consequently, the wave can be transformed in amplitude or phase and diffraction occurs. Those parts of the wavefront avoiding an obstacle form a diffraction pattern after interfering with each other. In this review paper, we have discussed the topic of non-diffractive beams, explicitly Bessel beams. Such beams provide some resistance to diffraction and hence are hypothetically a phenomenal alternate to Gaussian beams in several circumstances. Several outstanding applications are coined to Bessel beams and have been employed in commercial applications. We have discussed several hot applications based on these magnificent beams such as optical trapping, material processing, free-space long-distance self-healing beams, optical coherence tomography, superresolution, sharp focusing, polarization transformation, increased depth of focus, birefringence detection based on astigmatic transformed BB and encryption in optical communication. According to our knowledge, each topic presented in this review is justifiably explained.

Journal ArticleDOI
TL;DR: This paper presents a comprehensive review of the progress made over the past years about microvalves based on different actuation mechanisms, aimed at materials, fabrication methods, controlling performances, flow characteristics, and applications.
Abstract: The microvalve is one of the most important components in microfluidics. With decades of development, the microvalve has been widely used in many industries such as life science, chemical engineering, chip, and so forth. This paper presents a comprehensive review of the progress made over the past years about microvalves based on different actuation mechanisms. According to driving sources, plenty of actuation mechanisms are developed and adopted in microvalves, including electricity, magnetism, gas, material and creature, surface acoustic wave, and so on. Although there are currently a variety of microvalves, problems such as leakage, low precision, poor reliability, high energy consumption, and high cost still exist. Problems deserving to be further addressed are suggested, aimed at materials, fabrication methods, controlling performances, flow characteristics, and applications.

Journal ArticleDOI
TL;DR: An overview on various ultrasound transducer technologies including conventional piezoelectric and micromachined transducers, as well as optical ultrasound detection technology, explaining the core components of each technology, their working principle, and describe their manufacturing process.
Abstract: Ultrasound detection is one of the major components of photoacoustic imaging systems. Advancement in ultrasound transducer technology has a significant impact on the translation of photoacoustic imaging to the clinic. Here, we present an overview on various ultrasound transducer technologies including conventional piezoelectric and micromachined transducers, as well as optical ultrasound detection technology. We explain the core components of each technology, their working principle, and describe their manufacturing process. We then quantitatively compare their performance when they are used in the receive mode of a photoacoustic imaging system.

Journal ArticleDOI
TL;DR: The recent trends discussed in this review hold enormous potential for the widespread use of optical sensors in early-stage disease prediction and point-of-care testing devices.
Abstract: In recent years, several types of optical sensors have been probed for their aptitude in healthcare biosensing, making their applications in biomedical diagnostics a rapidly evolving subject. Optical sensors show versatility amongst different receptor types and even permit the integration of different detection mechanisms. Such conjugated sensing platforms facilitate the exploitation of their neoteric synergistic characteristics for sensor fabrication. This paper covers nearly 250 research articles since 2016 representing the emerging interest in rapid, reproducible and ultrasensitive assays in clinical analysis. Therefore, we present an elaborate review of biomedical diagnostics with the help of optical sensors working on varied principles such as surface plasmon resonance, localised surface plasmon resonance, evanescent wave fluorescence, bioluminescence and several others. These sensors are capable of investigating toxins, proteins, pathogens, disease biomarkers and whole cells in varied sensing media ranging from water to buffer to more complex environments such as serum, blood or urine. Hence, the recent trends discussed in this review hold enormous potential for the widespread use of optical sensors in early-stage disease prediction and point-of-care testing devices.

Journal ArticleDOI
TL;DR: The ZnO@MoS2 nanocomposite heterostructure provides a reference for the development of ultra-high-speed photoelectric switching devices, photodetector(PD) devices, and photoelectrocatalytic technologies.
Abstract: In this paper, ZnO@MoS2 core-shell heterojunction arrays were successfully prepared by the two-step hydrothermal method, and the growth mechanism was systematically studied. We found that the growth process of molybdenum disulfide (MoS2) was sensitively dependent on the reaction temperature and time. Through an X-ray diffractometry (XRD) component test, we determined that we prepared a 2H phase MoS2 with a direct bandgap semiconductor of 1.2 eV. Then, the photoelectric properties of the samples were studied on the electrochemical workstation. The results show that the ZnO@MoS2 heterojunction acts as a photoanode, and the photocurrent reaches 2.566 mA under the conditions of 1000 W/m2 sunshine and 0.6 V bias. The i-t curve also illustrates the perfect cycle stability. Under the condition of illumination and external bias, the electrons flow to the conduction band of MoS2 and flow out through the external electrode of MoS2. The holes migrate from the MoS2 to the zinc oxide (ZnO) valence band. It is transferred to the external circuit through the glass with fluorine-doped tin oxide (FTO) together with the holes on the ZnO valence band. The ZnO@MoS2 nanocomposite heterostructure provides a reference for the development of ultra-high-speed photoelectric switching devices, photodetector(PD) devices, and photoelectrocatalytic technologies.

Journal ArticleDOI
TL;DR: The focus of this review article is to highlight the recent progress in aptamer-based biosensor development with emphasis on the integration between aptamers and the various forms of LOC devices including microfluidic chips and paper-basedmicrofluidics.
Abstract: Aptamers are oligonucleotides or peptides that are selected from a pool of random sequences that exhibit high affinity toward a specific biomolecular species of interest. Therefore, they are ideal for use as recognition elements and ligands for binding to the target. In recent years, aptamers have gained a great deal of attention in the field of biosensing as the next-generation target receptors that could potentially replace the functions of antibodies. Consequently, it is increasingly becoming popular to integrate aptamers into a variety of sensing platforms to enhance specificity and selectivity in analyte detection. Simultaneously, as the fields of lab-on-a-chip (LOC) technology, point-of-care (POC) diagnostics, and personal medicine become topics of great interest, integration of such aptamer-based sensors with LOC devices are showing promising results as evidenced by the recent growth of literature in this area. The focus of this review article is to highlight the recent progress in aptamer-based biosensor development with emphasis on the integration between aptamers and the various forms of LOC devices including microfluidic chips and paper-based microfluidics. As aptamers are extremely versatile in terms of their utilization in different detection principles, a broad range of techniques are covered including electrochemical, optical, colorimetric, and gravimetric sensing as well as surface acoustics waves and transistor-based detection.

Journal ArticleDOI
TL;DR: The focus of this review is to give a brief overview of MN characteristics, material composition, as well as the production and commercial development of MN-based systems.
Abstract: Although transdermal drug delivery systems (DDS) offer numerous benefits for patients, including the avoidance of both gastric irritation and first-pass metabolism effect, as well as improved patient compliance, only a limited number of active pharmaceutical ingredients (APIs) can be delivered accordingly. Microneedles (MNs) represent one of the most promising concepts for effective transdermal drug delivery that penetrate the protective skin barrier in a minimally invasive and painless manner. The first MNs were produced in the 90s, and since then, this field has been continually evolving. Therefore, different manufacturing methods, not only for MNs but also MN molds, are introduced, which allows for the cost-effective production of MNs for drug and vaccine delivery and even diagnostic/monitoring purposes. The focus of this review is to give a brief overview of MN characteristics, material composition, as well as the production and commercial development of MN-based systems.

Journal ArticleDOI
TL;DR: This review collates around 100 papers that developed micro-electro-mechanical system (MEMS) capacitive microphones from 1989 to 2019 to beneficial for those who are interested with the evolutions of this acoustic sensor.
Abstract: This review collates around 100 papers that developed micro-electro-mechanical system (MEMS) capacitive microphones. As far as we know, this is the first comprehensive archive from academia on this versatile device from 1989 to 2019. These works are tabulated in term of intended application, fabrication method, material, dimension, and performances. This is followed by discussions on diaphragm, backplate and chamber, and performance parameters. This review is beneficial for those who are interested with the evolutions of this acoustic sensor.

Journal ArticleDOI
TL;DR: The specific absorption rate (SAR) value was found that its impact on the human body SAR value is 1.68 W/kg, which indicates the safer limit to avoid radiation effects, and the proposed method is promising for telemedicine and mobile health systems.
Abstract: A compact textile ultra-wideband (UWB) antenna with an electrical dimension of 0.24λo × 0.24λo × 0.009λo with microstrip line feed at lower edge and a frequency of operation of 2.96 GHz is proposed for UWB application. The analytical investigation using circuit theory concepts and the cavity model of the antenna is presented to validate the design. The main contribution of this paper is to propose a wearable antenna with wide impedance bandwidth of 118.68 % (2.96-11.6 GHz) applicable for UWB range of 3.1 to 10.6 GHz. The results present a maximum gain of 5.47 dBi at 7.3 GHz frequency. Moreover, this antenna exhibits Omni and quasi-Omni radiation patterns at various frequencies (4 GHz, 7 GHz and 10 GHz) for short-distance communication. The cutting notch and slot on the patch, and its effect on the antenna impedance to increase performance through current distribution is also presented. The time-domain characteristic of the proposed antenna is also discussed for the analysis of the pulse distortion phenomena. A constant group delay less than 1 ns is obtained over the entire operating impedance bandwidth (2.96-11.6 GHz) of the textile antenna in both situations, i.e., side by side and front to front. Linear phase consideration is also presented for both situations, as well as configurations of reception and transmission. An assessment of the effects of bending and humidity has been demonstrated by placing the antenna on the human body. The specific absorption rate (SAR) value was tested to show the radiation effect on the human body, and it was found that its impact on the human body SAR value is 1.68 W/kg, which indicates the safer limit to avoid radiation effects. Therefore, the proposed method is promising for telemedicine and mobile health systems.

Journal ArticleDOI
TL;DR: This review comprehensively summarize the usage of the secondary flow in inertial microfluidics, which is a relatively minor flow perpendicular to the primary flow that may reduce the number of equilibrium positions as well as modify the location of particles focusing within channel cross sections by applying an additional hydrodynamic drag.
Abstract: Inertial microfluidic technology, which can manipulate the target particle entirely relying on the microchannel characteristic geometry and intrinsic hydrodynamic effect, has attracted great attention due to its fascinating advantages of high throughput, simplicity, high resolution and low cost. As a passive microfluidic technology, inertial microfluidics can precisely focus, separate, mix or trap target particles in a continuous and high-flow-speed manner without any extra external force field. Therefore, it is promising and has great potential for a wide range of industrial, biomedical and clinical applications. In the regime of inertial microfluidics, particle migration due to inertial effects forms multiple equilibrium positions in straight channels. However, this is not promising for particle detection and separation. Secondary flow, which is a relatively minor flow perpendicular to the primary flow, may reduce the number of equilibrium positions as well as modify the location of particles focusing within channel cross sections by applying an additional hydrodynamic drag. For secondary flow,the pattern and magnitude can be controlled by the well-designed channel structure, such as curvature or disturbance obstacle. The magnitude and form of generated secondary flow are greatly dependent on the disturbing microstructure. Therefore, many inventive and delicate applications of secondary flow in inertial microfluidics have been reported. In this review, we comprehensively summarize the usage of the secondary flow in inertial microfluidics.

Journal ArticleDOI
TL;DR: This review introduced the microfluidic chip models of liver, kidney, heart, nerve, and other organs and multiple organs, highlighting the application of these models in drug toxicity detection.
Abstract: Organ-on-a-chip academic research is in its blossom. Drug toxicity evaluation is a promising area in which organ-on-a-chip technology can apply. A unique advantage of organ-on-a-chip is the ability to integrate drug metabolism and drug toxic processes in a single device, which facilitates evaluation of toxicity of drug metabolites. Human organ-on-a-chip has been fabricated and used to assess drug toxicity with data correlation with the clinical trial. In this review, we introduced the microfluidic chip models of liver, kidney, heart, nerve, and other organs and multiple organs, highlighting the application of these models in drug toxicity detection. Some biomarkers of toxic injury that have been used in organ chip platforms or have potential for use on organ chip platforms are summarized. Finally, we discussed the goals and future directions for drug toxicity evaluation based on organ-on-a-chip technology.

Journal ArticleDOI
TL;DR: A systematic review of the typical progress of liquid metal-enabled soft sensors, including material innovations, fabrication strategies, fundamental principles, representative application examples, and so on is presented to conclude the future challenges and opportunities.
Abstract: Sensors are core elements to directly obtain information from surrounding objects for further detecting, judging and controlling purposes. With the rapid development of soft electronics, flexible sensors have made considerable progress, and can better fit the objects to detect and, thus respond to changes more sensitively. Recently, as a newly emerging electronic ink, liquid metal is being increasingly investigated to realize various electronic elements, especially soft ones. Compared to conventional soft sensors, the introduction of liquid metal shows rather unique advantages. Due to excellent flexibility and conductivity, liquid-metal soft sensors present high enhancement in sensitivity and precision, thus producing many profound applications. So far, a series of flexible and wearable sensors based on liquid metal have been designed and tested. Their applications have also witnessed a growing exploration in biomedical areas, including health-monitoring, electronic skin, wearable devices and intelligent robots etc. This article presents a systematic review of the typical progress of liquid metal-enabled soft sensors, including material innovations, fabrication strategies, fundamental principles, representative application examples, and so on. The perspectives of liquid-metal soft sensors is finally interpreted to conclude the future challenges and opportunities.

Journal ArticleDOI
TL;DR: The aim of this review paper is to analyze the state-of-the-art and applicability of SLA based 3D printing technology in IC manufacturing, asSLA based AM technologies have been gaining enormous popularity in recent times.
Abstract: Advanced methods for manufacturing high quality parts should be used to ensure the production of competitive products for the world market. Investment casting (IC) is a process where a wax pattern is used as a sacrificial pattern to manufacture high precision casting of solid metal parts. Rapid casting is in turn, a technique that eases the IC process by combining additive manufacturing (AM) technologies with IC. The use of AM technologies to create patterns for new industrial products is a unique opportunity to develop cost-effective methods for producing investment casting parts in a timely manner. Particularly, stereolithography (SLA) based AM is of interest due to its high dimensional accuracy and the smooth surface quality of the printed parts. From the first appearance of commercially available SLA printers in the market, it took a few decades until desktop SLA printers became available to consumers at a reasonable price. Therefore, the aim of this review paper is to analyze the state-of-the-art and applicability of SLA based 3D printing technology in IC manufacturing, as SLA based AM technologies have been gaining enormous popularity in recent times. Other AM techniques in IC are also reviewed for comparison. Moreover, the SLA process parameters, material properties, and current issues are discussed.

Journal ArticleDOI
TL;DR: The structure of Kretschmann configuration, the sensing principle of SPR, its characteristic parameters, application in various fields, and some important recent works related to SPR sensors have also been discussed, based on the present and future scope of this field.
Abstract: The absorption and binding energy of material plays an important role with a large surface area and conductivity for the development of any sensing device. The newly grown 2D nanomaterials like black phosphorus transition metal dichalcogenides (TMDCs) or graphene have excellent properties for sensing devices' fabrication. This paper summarizes the progress in the area of the 2D nanomaterial-based surface plasmon resonance (SPR) sensor during last decade. The paper also focuses on the structure of Kretschmann configuration, the sensing principle of SPR, its characteristic parameters, application in various fields, and some important recent works related to SPR sensors have also been discussed, based on the present and future scope of this field. The present paper provides a platform for researchers to work in the field of 2D nanomaterial-based SPR sensors.

Journal ArticleDOI
TL;DR: The composite heterostructure of the material has super strong hydrophilicity and can be combined with water-soluble pollutants very well and has excellent anti-reflection performance, which can absorb light from all angles.
Abstract: A ZnO seed layer was formed on the fluorine-doped tin oxide substrate by magnetron sputtering, and then a ZnO nanorod was grown on the ZnO seed layer by a hydrothermal method. Next, we prepared a single-crystal Ag seed layer by magnetron sputtering to form a ZnO@Ag composite heterostructure. Finally, Ag3PO4 crystals were grown on the Ag seed layer by a stepwise deposition method to obtain a ZnO@Ag@Ag3PO4 ternary heterojunction. The composite heterostructure of the material has super strong hydrophilicity and can be combined with water-soluble pollutants very well. Besides, it has excellent anti-reflection performance, which can absorb light from all angles. When Ag exists in the heterojunction, it can effectively improve the separation of photo-generated electrons and holes, and improve the photoelectric conversion performance. Based on the above characteristics, this nano-heterostructure can be used in the fields of solar cells, sensors, light-emitting devices, and photocatalysis.

Journal ArticleDOI
TL;DR: This study presents a comprehensive review of the powder-based three-dimensional (3D)-printing processes and how these processes impact the creation of devices with micro and mesoscale features.
Abstract: Customized manufacturing of a miniaturized device with micro and mesoscale features is a key requirement of mechanical, electrical, electronic and medical devices. Powder-based 3D-printing processes offer a strong candidate for micromanufacturing due to the wide range of materials, fast production and high accuracy. This study presents a comprehensive review of the powder-based three-dimensional (3D)-printing processes and how these processes impact the creation of devices with micro and mesoscale features. This review also focuses on applications of devices with micro and mesoscale size features that are created by powder-based 3D-printing technology.

Journal ArticleDOI
TL;DR: An inclusive overview of fundamental theory and background is presented, then two sets of mechanisms underlying acoustic separation, bulk acoustic wave and surface acoustic wave, are introduced and discussed, and a variety of applications based on acoustic separation are presented.
Abstract: Microfluidic separation technology has garnered significant attention over the past decade where particles are being separated at a micro/nanoscale in a rapid, low-cost, and simple manner. Amongst a myriad of separation technologies that have emerged thus far, acoustic microfluidic separation techniques are extremely apt to applications involving biological samples attributed to various advantages, including high controllability, biocompatibility, and non-invasive, label-free features. With that being said, downsides such as low throughput and dependence on external equipment still impede successful commercialization from laboratory-based prototypes. Here, we present a comprehensive review of recent advances in acoustic microfluidic separation techniques, along with exemplary applications. Specifically, an inclusive overview of fundamental theory and background is presented, then two sets of mechanisms underlying acoustic separation, bulk acoustic wave and surface acoustic wave, are introduced and discussed. Upon these summaries, we present a variety of applications based on acoustic separation. The primary focus is given to those associated with biological samples such as blood cells, cancer cells, proteins, bacteria, viruses, and DNA/RNA. Finally, we highlight the benefits and challenges behind burgeoning developments in the field and discuss the future perspectives and an outlook towards robust, integrated, and commercialized devices based on acoustic microfluidic separation.

Journal ArticleDOI
Xiaoting Zhao1, Nan Zhao1, Yang Shi1, Hongbao Xin1, Baojun Li1 
TL;DR: This work reviews the optical fiber tweezers-based trapping and manipulation, including dual fibertweezers for trapping and manipulations, single fiber twezers for traps and single cell analysis, optical Fiber tweezer for cell assembly, structured optical fiber for enhanced trapping and manipulate, subwavelength optical fiber wire for evanescent fields-based traps and delivery.
Abstract: Optical trapping is widely used in different areas, ranging from biomedical applications, to physics and material sciences. In recent years, optical fiber tweezers have attracted significant attention in the field of optical trapping due to their flexible manipulation, compact structure, and easy fabrication. As a versatile tool for optical trapping and manipulation, optical fiber tweezers can be used to trap, manipulate, arrange, and assemble tiny objects. Here, we review the optical fiber tweezers-based trapping and manipulation, including dual fiber tweezers for trapping and manipulation, single fiber tweezers for trapping and single cell analysis, optical fiber tweezers for cell assembly, structured optical fiber for enhanced trapping and manipulation, subwavelength optical fiber wire for evanescent fields-based trapping and delivery, and photothermal trapping, assembly, and manipulation.