scispace - formally typeset
Search or ask a question

Showing papers in "Molecular Cancer Research in 2008"


Journal ArticleDOI
TL;DR: Comparing protein profiles between CD133+ and CD133− subpopulations isolated from Huh7 and PLC8024 and identifying aldehyde dehydrogenase 1A1 as one of the proteins that are preferentially expressed in theCD133+ subfraction reveals the existence of a hierarchical organization in HCC bearing tumorigenic potential in the order of CD133+.
Abstract: Recent efforts in our study of cancer stem cells (CSC) in hepatocellular carcinoma (HCC) have led to the identification of CD133 as a prominent HCC CSC marker. Findings were based on experiments done on cell lines and xenograft tumors where expression of CD133 was detected at levels as high as 65%. Based on the CSC theory, CSCs are believed to represent only a minority number of the tumor mass. This is indicative that our previously characterized CD133+ HCC CSC population is still heterogeneous, consisting of perhaps subsets of cells with differing tumorigenic potential. We hypothesized that it is possible to further enrich the CSC population by means of additional differentially expressed markers. Using a two-dimensional PAGE approach, we compared protein profiles between CD133+ and CD133− subpopulations isolated from Huh7 and PLC8024 and identified aldehyde dehydrogenase 1A1 as one of the proteins that are preferentially expressed in the CD133+ subfraction. Analysis of the expression of several different ALDH isoforms and ALDH enzymatic activity in liver cell lines found ALDH to be positively correlated with CD133 expression. Dual-color flow cytometry analysis found the majority of ALDH+ to be CD133+, yet not all CD133+ HCC cells were ALDH+. Subsequent studies on purified subpopulations found CD133+ALDH+ cells to be significantly more tumorigenic than their CD133−ALDH+ or CD133−ALDH− counterparts, both in vitro and in vivo. These data, combined with those from our previous work, reveal the existence of a hierarchical organization in HCC bearing tumorigenic potential in the order of CD133+ALDH+ > CD133+ALDH− > CD133−ALDH−. ALDH, expressed along CD133, can more specifically characterize the tumorigenic liver CSC population. (Mol Cancer Res 2008;6(7):1146–53)

435 citations


Journal ArticleDOI
TL;DR: Flow cytometric time series analyses showed that the likely mechanism of miR-34a growth inhibition is through cell cycle arrest followed by apoptosis, which support miR -34a as a tumor suppressor gene in human neuroblastoma.
Abstract: MicroRNAs are small noncoding RNAs that have critical roles in regulating a number of cellular functions through transcriptional silencing. They have been implicated as oncogenes and tumor suppressor genes (oncomirs) in several human neoplasms. We used an integrated genomics and functional screening strategy to identify potential oncomirs in the pediatric neoplasm neuroblastoma. We first identified microRNAs that map within chromosomal regions that we and others have defined as frequently deleted (1p36, 3p22, and 11q23-24) or gained (17q23) in high-risk neuroblastoma. We then transiently transfected microRNA precursor mimics or inhibitors into a panel of six neuroblastoma cell lines that we characterized for these genomic aberrations. The majority of transfections showed no phenotypic effect, but the miR-34a (1p36) and miR-34c (11q23) mimics showed dramatic growth inhibition in cell lines with 1p36 hemizygous deletion. In contrast, there was no growth inhibition by these mimics in cell lines without 1p36 deletions. Quantitative reverse transcription-PCR showed a perfect correlation of absent miR-34a expression in cell lines with a 1p36 aberration and phenotypic effect after mimetic add-back. Expression of miR-34a was also decreased in primary tumors ( n = 54) with 1p36 deletion ( P = 0.009), but no mutations were discovered in resequencing of the miR-34a locus in 30 neuroblastoma cell lines. Flow cytometric time series analyses showed that the likely mechanism of miR-34a growth inhibition is through cell cycle arrest followed by apoptosis. BCL2 and MYCN were identified as miR-34a targets and likely mediators of the tumor suppressor phenotypic effect. These data support miR-34a as a tumor suppressor gene in human neuroblastoma. (Mol Cancer Res 2008;6(5):735–42)

307 citations


Journal ArticleDOI
TL;DR: The results indicate that the anticancer and antiinflammatory activities previously assigned to TQ may be mediated in part through the suppression of the NF-κB activation pathway, and thus may have potential in treatment of myeloid leukemia and other cancers.
Abstract: Thymoquinone (TQ), derived from the medicinal plant Nigella sativa, exhibits antiinflammatory and anticancer activities through mechanism(s) that is not fully understood. Because numerous effects modulated by TQ can be linked to interference with the nuclear factor-kappaB (NF-kappa B) signaling, we investigated in detail the effect of this quinone on NF-kappa B pathway. As examined by DNA binding, we found that TQ suppressed tumor necrosis factor-induced NF-kappa B activation in a dose- and time-dependent manner and inhibited NF-kappaB activation induced by various carcinogens and inflammatory stimuli. The suppression of NF-kappaB activation correlated with sequential inhibition of the activation of I kappa B alpha kinase, I kappa B alpha phosphorylation, I kappa B alpha degradation, p65 phosphorylation, p65 nuclear translocation, and the NF-kappa B-dependent reporter gene expression. TQ specifically suppressed the direct binding of nuclear p65 and recombinant p65 to the DNA, and this binding was reversed by DTT. However, TQ did not inhibit p65 binding to DNA when cells were transfected with the p65 plasmid containing cysteine residue 38 mutated to serine. TQ also down-regulated the expression of NF-kappa B-regulated antiapoptotic (IAP1, IAP2, XIAP Bcl-2, Bcl-xL, and survivin), proliferative (cyclin D1, cyclooxygenase-2, and c-Myc), and angiogenic (matrix metalloproteinase-9 and vascular endothelial growth factor) gene products. This led to potentiation of apoptosis induced by tumor necrosis factor and chemotherapeutic agents. Overall, our results indicate that the anticancer and antiinflammatory activities previously assigned to TQ may be mediated in part through the suppression of the NF-kappa B activation pathway, as shown here, and thus may have potential in treatment of myeloid leukemia and other cancers.

302 citations


Journal ArticleDOI
TL;DR: This review will specifically focus on the roles that EphA2 and ephrinA1 play in the different cell types that contribute to the malignancy of solid tumors, with emphasis on the opportunities for therapeutic targeting.
Abstract: The Eph receptor tyrosine kinases and ephrin ligands have been studied extensively for their roles in developmental processes. In recent years, Eph receptors and ephrins have been found to be integral players in cancer formation and progression. Among these are EphA2 and ephrinA1, which are involved in the development and maintenance of many different types of solid tumors. The function of EphA2 and ephrinA1 in tumorigenesis and tumor progression is complex and seems to be dependent on cell type and microenvironment. These variables affect the expression of the EphA2 and ephrinA1 proteins, the pathways through which they induce signaling, and the functional consequences of that signaling on the behavior of tumor cells and tumor-associated cells. This review will specifically focus on the roles that EphA2 and ephrinA1 play in the different cell types that contribute to the malignancy of solid tumors, with emphasis on the opportunities for therapeutic targeting.

277 citations


Journal ArticleDOI
TL;DR: The zebrafish model has created its own niche in cancer research, complementing existing models with its specific experimental advantages and characteristics, and screening possibilities not only for chemical modifiers but also for genetic enhancers and suppressors.
Abstract: The zebrafish has developed into an important model organism for biomedical research over the last decades. Although the main focus of zebrafish research has traditionally been on developmental biology, keeping and observing zebrafish in the lab led to the identification of diseases similar to humans, such as cancer, which subsequently became a subject for study. As a result, about 50 articles have been published since 2000 in which zebrafish were used as a cancer model. Strategies used include carcinogenic treatments, transplantation of mammalian cancer cells, forward genetic screens for proliferation or genomic instability, reverse genetic target-selected mutagenesis to inactivate known tumor suppressor genes, and the generation of transgenics to express human oncogenes. Zebrafish have been found to develop almost any tumor type known from human, with similar morphology and, according to gene expression array studies, comparable signaling pathways. However, tumor incidences are relatively low, albeit highly comparable between different mutants, and tumors develop late in life. In addition, tumor spectra are sometimes different when compared with mice and humans. Nevertheless, the zebrafish model has created its own niche in cancer research, complementing existing models with its specific experimental advantages and characteristics. Examples of these are imaging of tumor progression in living fish by fluorescence, treatment with chemical compounds, and screening possibilities not only for chemical modifiers but also for genetic enhancers and suppressors. This review aims to provide a comprehensive overview of the state of the art of zebrafish as a model in cancer research. (Mol Cancer Res 2008;6(5):685-94).

250 citations


Journal ArticleDOI
TL;DR: Compared the apoptotic response of a panel of six human breast cancer cell lines with recombinant human TRAIL and antibodies to DR4 or DR5, the results show that TRAIL death receptors undergo constitutive endocytosis in some breast cancer cells.
Abstract: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its agnostic antibodies, which are being evaluated clinically as anticancer therapies, selectively kill cancer cells through the death receptors DR4 and DR5. However, their therapeutic potential is limited by occurring resistance in tumor cells. Here, we compared the apoptotic response of a panel of six human breast cancer cell lines with recombinant human TRAIL and antibodies to DR4 or DR5. Despite their total mRNA and protein expression, TRAIL death receptors, with a higher frequency in DR4, are absent on cell surface in some cell lines. Loss of cell surface expression of

238 citations


Journal ArticleDOI
TL;DR: It is indicated that established cancer cell lines are generally a poor representation of primary tumor biology, presenting a host of genomic and gene expression changes not observed in primary tissues, although some discrete features of glioma biology were conserved in the established cell lines.
Abstract: Genetic aberrations, such as gene amplification, deletions, and loss of heterozygosity, are hallmarks of cancer and are thought to be major contributors to the neoplastic process. Established cancer cell lines have been the primary in vitro and in vivo models for cancer for more than 2 decades; however, few such cell lines have been extensively characterized at the genomic level. Here, we present a high-resolution genome-wide chromosomal alteration and gene expression analyses of five of the most commonly used glioma cell lines and compare the findings with those observed in 83 primary human gliomas. Although genomic alterations known to occur in primary tumors were identified in the cell lines, we also observed several novel recurrent aberrations in the glioma cell lines that are not frequently represented in primary tumors. Additionally, a global gene expression cluster distinct from primary tumors was identified in the glioma cell lines. Our results indicate that established cell lines are generally a poor representation of primary tumor biology, presenting a host of genomic and gene expression changes not observed in primary tissues, although some discrete features of glioma biology were conserved in the established cell lines. Refined maps of genetic alterations and transcriptional divergence from the original tumor type, such as the one presented here, may help serve as a guideline for a more biologically rational and clinically relevant selection of the most appropriate glioma model for a given experiment.

232 citations


Journal ArticleDOI
TL;DR: In glioblastoma, STAT-3 acts a molecular hub to link extracellular signals to transcriptional control of proliferation, cell cycle progression, and immune evasion, and has significant potential as a therapeutic target.
Abstract: Glioblastoma is the most common and severe primary brain tumor in adults. Its aggressive and infiltrative nature renders the current therapeutics of surgical resection, radiation, and chemotherapy relatively ineffective. Accordingly, recent research has focused on the elucidation of various signal transduction pathways in glioblastoma, particularly aberrant activation. This review focuses on the signal transducer and activator of transcription-3 (STAT-3) signal transduction pathway in the context of this devastating tumor. STAT-3 is aberrantly activated in human glioblastoma tissues, and this activation is implicated in controlling critical cellular events thought to be involved in gliomagenesis, such as cell cycle progression, apoptosis, angiogenesis, and immune evasion. There are no reports of gain-of-function mutations in glioblastoma; rather, the activation of STAT-3 is thought to be a consequence of either dysregulation of upstream kinases or loss of endogenous inhibitors. This review provides detailed insight into the multiple mechanisms of STAT-3 activation in glioblastoma, as well as describing endogenous and chemical inhibitors of this pathway and their clinical significance. In glioblastoma, STAT-3 acts a molecular hub to link extracellular signals to transcriptional control of proliferation, cell cycle progression, and immune evasion. Because STAT-3 plays this central role in glioblastoma signal transduction, it has significant potential as a therapeutic target.

231 citations


Journal ArticleDOI
TL;DR: Comparison with expression data from human melanoma patients shows that this metastasis gene signature correlates with the aggressiveness of melanoma metastases in human patients, suggesting the importance of tumor-microenvironment interactions during metastasis.
Abstract: Metastasis is the deadliest phase of cancer progression. Experimental models using immunodeficient mice have been used to gain insights into the mechanisms of metastasis. We report here the identification of a "metastasis aggressiveness gene expression signature" derived using human melanoma cells selected based on their metastatic potentials in a xenotransplant metastasis model. Comparison with expression data from human melanoma patients shows that this metastasis gene signature correlates with the aggressiveness of melanoma metastases in human patients. Many genes encoding secreted and membrane proteins are included in the signature, suggesting the importance of tumor-microenvironment interactions during metastasis.

228 citations


Journal ArticleDOI
TL;DR: The discussion of the major aspects of ZAG from its gene structure to function and metabolism is discussed, which suggests that ZAG may have a role in the expression of the immune response.
Abstract: Zinc alpha 2-glycoprotein (ZAG) is a protein of interest because of its ability to play many important functions in the human body, including fertilization and lipid mobilization After the discovery of this molecule, during the last 5 decades, various studies have been documented on its structure and functions, but still, it is considered as a protein with an unknown function Its expression is regulated by glucocorticoids Due to its high sequence homology with lipid-mobilizing factor and high expression in cancer cachexia, it is considered as a novel adipokine On the other hand, structural organization and fold is similar to MHC class I antigen-presenting molecule; hence, ZAG may have a role in the expression of the immune response The function of ZAG under physiologic and cancerous conditions remains mysterious but is considered as a tumor biomarker for various carcinomas There are several unrelated functions that are attributed to ZAG, such as RNase activity, regulation of melanin production, hindering tumor proliferation, and transport of nephritic by-products This article deals with the discussion of the major aspects of ZAG from its gene structure to function and metabolism

207 citations


Journal ArticleDOI
Nikki Cheng1, Anna Chytil1, Yu Shyr, Alison Joly2, Harold L. Moses1 
TL;DR: A tumor-suppressive role for TGF-β signaling in fibroblasts is shown, in part by suppressing HGF signaling between mammary fibro Blasts and epithelial cells.
Abstract: Fibroblasts are major cellular components of the tumor microenvironment, regulating tumor cell behavior in part through secretion of extracellular matrix proteins, growth factors, and angiogenic factors. In previous studies, conditional deletion of the type II transforming growth factor-beta (TGF-beta) receptor in fibroblasts (Tgfbr2FspKO) was shown to promote mammary tumor metastasis in fibroblast-epithelial cell cotransplantation studies in mice, correlating with increased expression of hepatocyte growth factor (HGF). Here, we advance our findings to show that Tgfbr2(FspKO) fibroblasts enhance HGF/c-Met and HGF/Ron signaling to promote scattering and invasion of mammary carcinoma cells. Blockade of c-Met and Ron by small interfering RNA silencing and pharmacologic inhibitors significantly reduced mammary carcinoma cell scattering and invasion caused by Tgfbr2FspKO fibroblasts. Moreover, neutralizing antibodies to c-Met and Ron significantly inhibited HGF-induced cell scattering and invasion, correlating with reduced Stat3 and p42/44MAPK phosphorylation. Investigation of the signal transducer and activator of transcription 3 (Stat3) and mitogen-activated protein kinase (MAPK) signaling pathways by pharmacologic inhibition and small interfering RNA silencing revealed a cooperative interaction between the two pathways to regulate HGF-induced invasion, scattering, and motility of mammary tumor cells. Furthermore, whereas c-Met was found to regulate both the Stat3 and MAPK signaling pathways, Ron was found to regulate Stat3 but not MAPK signaling in mammary carcinoma cells. These studies show a tumor-suppressive role for TGF-beta signaling in fibroblasts, in part by suppressing HGF signaling between mammary fibroblasts and epithelial cells. These studies characterize complex functional roles for HGF and TGF-beta signaling in mediating tumor-stromal interactions during mammary tumor cell scattering and invasion, with important implications in the metastatic process.

Journal ArticleDOI
TL;DR: The results indicate that down-regulation of hsa-miR-10a may increase USF2 and contribute to the increase in cell proliferation of CML implicating a miRNA in the abnormal behavior of C ML.
Abstract: MicroRNAs (miRNA) are small noncoding, single-stranded RNAs that inhibit gene expression at a posttranscriptional level, whose abnormal expression has been described in different tumors. The aim of our study was to identify miRNAs potentially implicated in chronic myeloid leukemia (CML). We detected an abnormal miRNA expression profile in mononuclear and CD34+ cells from patients with CML compared with healthy controls. Of 157 miRNAs tested, hsa-miR-10a, hsa-miR-150 , and hsa-miR-151 were down-regulated, whereas hsa-miR-96 was up-regulated in CML cells. Down-regulation of hsa-miR-10a was not dependent on BCR-ABL1 activity and contributed to the increased cell growth of CML cells. We identified the upstream stimulatory factor 2 ( USF2 ) as a potential target of hsa-miR-10a and showed that overexpression of USF2 also increases cell growth. The clinical relevance of these findings was shown in a group of 85 newly diagnosed patients with CML in which expression of hsa-miR-10a was down-regulated in 71% of the patients, whereas expression of USF2 was up-regulated in 60% of the CML patients, with overexpression of USF2 being significantly associated with decreased expression of hsa-miR-10a ( P = 0.004). Our results indicate that down-regulation of hsa-miR-10a may increase USF2 and contribute to the increase in cell proliferation of CML implicating a miRNA in the abnormal behavior of CML. (Mol Cancer Res 2008;6(12):1830–40)

Journal ArticleDOI
TL;DR: The data indicate that oncogenic BRAF inhibition can have a different effect on cell fate depending on the cellular type, and suggest that a BRAF-independent mechanism of cell survival exists in anaplastic thyroid cancer cells.
Abstract: BRAF-activating mutations have been reported in several types of cancer, including melanoma ( approximately 70% of cases), thyroid (30-70%), ovarian (15-30%), and colorectal cancer (5-20%). Mutant BRAF has constitutive kinase activity and causes hyperactivation of the mitogen-activated protein kinase pathway. BRAF silencing induces regression of melanoma xenografts, indicating the essential role of BRAF for cell survival. We set up an inducible short hairpin RNA system to compare the role of oncogenic BRAF in thyroid carcinoma versus melanoma cells. Although BRAF knockdown led to apoptosis in the melanoma cell line A375, the anaplastic thyroid carcinoma cell ARO underwent growth arrest upon silencing, with little or no cell death. Reexpression of the thyroid differentiation marker, sodium iodide symporter, was induced after long-term silencing. The different outcome of BRAF down-regulation in the two cell lines was associated with an opposite regulation of p21(CIP1/WAF1) expression levels in response to the block of the BRAF mitogenic signal. These results were confirmed using a specific BRAF small-molecule inhibitor, PLX4032. Restoration of p21(CIP1/WAF1) expression rescued melanoma cells from death. Altogether, our data indicate that oncogenic BRAF inhibition can have a different effect on cell fate depending on the cellular type. Furthermore, we suggest that a BRAF-independent mechanism of cell survival exists in anaplastic thyroid cancer cells.

Journal ArticleDOI
TL;DR: A novel system to create DNA DSBs at defined endogenous sites in the human genome was developed and this system showed the functional importance of ATM kinase activity and phosphorylation in the response to D SBs and supported a model in which ordered chromatin structure changes that occur after DNA breakage and that depend on functional NBS1 and ATM facilitate DNA D SB repair.
Abstract: Significant progress has been made in recent years in elucidating the molecular controls of cellular responses to DNA damage in mammalian cells. Much of our understanding of the mechanisms involved in cellular DNA damage response pathways has come from studies of human cancer susceptibility syndromes that are altered in DNA damage responses. Ataxia-telangiectasia mutated (ATM), the gene mutated in the disorder ataxia-telangiectasia, codes for a protein kinase that is a central mediator of responses to DNA double-strand breaks (DSB) in cells. Once activated, ATM phosphorylates numerous substrates in the cell that modulate the response of the cell to the DNA damage. We recently developed a novel system to create DNA DSBs at defined endogenous sites in the human genome and used this system to detect protein recruitment and loss at and around these breaks by chromatin immunoprecipitation. Results from this system showed the functional importance of ATM kinase activity and phosphorylation in the response to DSBs and supported a model in which ordered chromatin structure changes that occur after DNA breakage and that depend on functional NBS1 and ATM facilitate DNA DSB repair. Insights about these pathways provide us with opportunities to develop new approaches to benefit patients. Examples and opportunities for developing inhibitors that act as sensitizers to chemotherapy or radiation therapy or activators that could improve responses to cellular stresses, such as oxidative damage, are discussed. Relevant to the latter, we have shown benefits of an ATM activator in disease settings ranging from metabolic syndrome to cancer prevention.

Journal ArticleDOI
TL;DR: It is shown that cadherin-11 (also known as osteoblast-cadherin) was highly expressed in prostate cancer cell line derived from bone metastases and had strong homophilic binding to recombinant cadherIn-11 in vitro.
Abstract: Bone is the most common site of metastases from prostate cancer. The mechanism by which prostate cancer cells metastasize to bone is not fully understood, but interactions between prostate cancer cells and bone cells are thought to initiate the colonization of metastatic cells at that site. Here, we show that cadherin-11 (also known as osteoblast-cadherin) was highly expressed in prostate cancer cell line derived from bone metastases and had strong homophilic binding to recombinant cadherin-11 in vitro. Down-regulation of cadherin-11 in bone metastasis–derived PC3 cells with cadherin-11–specific short hairpin RNA (PC3-shCad-11) significantly decreased the adhesion of those cells to cadherin-11 in vitro. In a mouse model of metastasis, intracardiac injection of PC3 cells led to metastasis of those cells to bone. However, the incidence of PC3 metastasis to bone in this model was reduced greatly when the expression of cadherin-11 by those cells was silenced. The clinical relevance of cadherin-11 in prostate cancer metastases was further studied by examining the expression of cadherin-11 in human prostate cancer specimens. Cadherin-11 was not expressed by normal prostate epithelial cells but was detected in prostate cancer, with its expression increasing from primary to metastatic disease in lymph nodes and especially bone. Cadherin-11 expression was not detected in metastatic lesions that occur in other organs. Collectively, these findings suggest that cadherin-11 is involved in the metastasis of prostate cancer cells to bone. (Mol Cancer Res 2008;6(8):1259–67)

Journal ArticleDOI
TL;DR: Findings show a novel mode by which Hif-1α is regulated not only in cancer cells but also in the tumor-associated inflammatory cells, suggesting Stat3 as an important molecular target for inhibiting the oncogenic potential of HIF-1 induced by both hypoxia and overactive growth signaling pathways prevalent in cancer.
Abstract: Hypoxia-inducible factor 1 (HIF-1) is a potent tumorigenic factor. Its α subunit (HIF-1α), which is tightly regulated in normal tissues, is elevated in tumors due to hypoxia and overactive growth signaling pathways. Although much is known about HIF-1α regulation in cancer cells, crucial molecular targets that affect HIF-1α levels modulated by both hypoxia and oncogenic signaling pathways remain to be identified. Additionally, whether and how the tumor microenvironment contributes to HIF-1α accumulation is unclear. This study shows a novel mechanism by which HIF-1α availability is regulated in both cancer cells and in myeloid cells in the tumor microenvironment. We show a requirement of signal transducer and activator of transcription 3 (Stat3) for HIF-1α RNA expression under both hypoxia and growth signaling conditions. Furthermore, tumor-derived myeloid cells express elevated levels of HIF-1α mRNA relative to their counterparts from normal tissues in a Stat3-dependent manner. Additionally, Stat3 activity in the nontransformed cells in the tumor milieu affects HIF-1α RNA expression of the entire growing tumor. Consistent with a role of Stat3 in regulating HIF-1α RNA transcription, elevated Stat3 activity increases HIF-1α promoter activity, and Stat3 protein binds to the HIF-1α promoter in both transformed cells and in growing tumors. Taken together, these findings show a novel mode by which HIF-1α is regulated not only in cancer cells but also in the tumor-associated inflammatory cells, suggesting Stat3 as an important molecular target for inhibiting the oncogenic potential of HIF-1 induced by both hypoxia and overactive growth signaling pathways prevalent in cancer. (Mol Cancer Res 2008;6(7):1099–105)

Journal ArticleDOI
TL;DR: Seven miRNAs are identified and Virtually all the miRNA precursor transcripts are expressed at higher levels in late-stage B cells compared with immature B cells, suggesting possible roles in lymphoid development and/or lymphoma.
Abstract: The PVT1 locus is identified as a cluster of T(2;8) and T(8;22) "variant" MYC-activating chromosomal translocation breakpoints extending 400 kb downstream of MYC in a subset (approximately 20%) of Burkitt's lymphoma (vBL). Recent reports that microRNAs (miRNA) may be associated with fragile sites and cancer-associated genomic regions prompted us to investigate whether the PVT1 region on chromosome 8q24 may contain miRNAs. Computational analysis of the genomic sequence covering the PVT1 locus and experimental verification identified seven miRNAs. One miRNA, hsa-miR-1204, resides within a previously described PVT1 exon (1b) that is often fused to the immunoglobulin light chain constant region in vBLs and is present in high copy number in MYC/PVT1-amplified tumors. Like its human counterpart, mouse mmu-miR-1204 represents the closest miRNA to Myc (~50 kb) and is found only 1 to 2 kb downstream of a cluster of retroviral integration sites. Another miRNA, mmu-miR-1206, is close to a cluster of variant translocation breakpoints associated with mouse plasmacytoma and exon 1 of mouse Pvt1. Virtually all the miRNA precursor transcripts are expressed at higher levels in late-stage B cells (including plasmacytoma and vBL cell lines) compared with immature B cells, suggesting possible roles in lymphoid development and/or lymphoma. In addition, lentiviral vector-mediated overexpression of the miR-1204 precursor (human and mouse) in a mouse pre-B-cell line increased expression of Myc. High levels of expression of the hsa-miR-1204 precursor is also seen in several epithelial cancer cell lines with MYC/PVT1 coamplification, suggesting a potentially broad role for these miRNAs in tumorigenesis.

Journal ArticleDOI
TL;DR: Observations provide evidence for a necrosis-like form of cell death initiated by dysregulation of macropinocytosis, which is dubbed “methuosis,” and an activated form of the Rac1 GTPase induces a similar form ofcell death, suggesting that Ras acts through Rac-dependent signaling pathways to hyperstimulate macrop in glioblastoma.
Abstract: Expression of activated Ras in glioblastoma cells induces accumulation of large phase-lucent cytoplasmic vacuoles, followed by cell death. This was previously described as autophagic cell death. However, unlike autophagosomes, the Ras-induced vacuoles are not bounded by a double membrane and do not sequester organelles or cytoplasm. Moreover, they are not acidic and do not contain the autophagosomal membrane protein LC3-II. Here we show that the vacuoles are enlarged macropinosomes. They rapidly incorporate extracellular fluid-phase tracers but do not sequester transferrin or the endosomal protein EEA1. Ultimately, the cells expressing activated Ras detach from the substratum and rupture, coincident with the displacement of cytoplasm with huge macropinosome-derived vacuoles. These changes are accompanied by caspase activation, but the broad-spectrum caspase inhibitor carbobenzoxy-Val-Ala-Asp-fluoromethylketone does not prevent cell death. Moreover, the majority of degenerating cells do not exhibit chromatin condensation typical of apoptosis. These observations provide evidence for a necrosis-like form of cell death initiated by dysregulation of macropinocytosis, which we have dubbed "methuosis." An activated form of the Rac1 GTPase induces a similar form of cell death, suggesting that Ras acts through Rac-dependent signaling pathways to hyperstimulate macropinocytosis in glioblastoma. Further study of these signaling pathways may lead to the identification of other chemical and physiologic triggers for this unusual form of cell death.

Journal ArticleDOI
TL;DR: In vivo data provided direct evidence that NSCs preferentially distributed to hypoxic areas inside intracranial glioma xenografts, as detected by pimonidazole hypoxia probe, as well as to the tumor edge, and that both areas displayed high SDF-1 expression.
Abstract: Hypoxia is a critical aspect of the microenvironment in glioma and generally signifies unfavorable clinical outcome. Effective targeting of hypoxic areas in gliomas remains a significant therapeutic challenge. New therapeutic platforms using neural stem cells (NSC) for tumor-targeted drug delivery show promise in treatment of cancers that are refractory to traditional therapies. However, the molecular mechanisms of NSC targeting to hypoxic tumor areas are not well understood. Therefore, we investigated the role of hypoxia in directed migration of NSCs to glioma and identified the specific signaling molecules involved. Our data showed that hypoxia caused increased migration of human HB1.F3 NSCs to U251 human glioma-conditioned medium in vitro. In HB1.F3 NSCs, hypoxia led to up-regulation of CXCR4, urokinase-type plasminogen activator receptor (uPAR), vascular endothelial growth factor receptor 2 (VEGFR2), and c-Met receptors. Function-inhibiting antibodies to these receptors inhibited the migration of HB1.F3 cells to glioma-conditioned medium. Small interfering RNA knockdown of hypoxia-inducible factor-1alpha in glioma cells blocked the hypoxia-induced migration of NSCs, which was due to decreased expression of stromal cell-derived factor-1 (SDF-1), uPA, and VEGF in glioma cells. Our in vivo data provided direct evidence that NSCs preferentially distributed to hypoxic areas inside intracranial glioma xenografts, as detected by pimonidazole hypoxia probe, as well as to the tumor edge, and that both areas displayed high SDF-1 expression. These observations indicate that hypoxia is a key factor in determining NSC tropism to glioma and that SDF-1/CXCR4, uPA/uPAR, VEGF/VEGFR2, and hepatocyte growth factor/c-Met signaling pathways mediate increased NSC-to-glioma tropism under hypoxia. These results have significant implications for development of stem cell-mediated tumor-selective gene therapies.

Journal ArticleDOI
TL;DR: The data suggest that Per2 gene product suppresses tumorigenesis in the small intestine and colon by down-regulation of β-catenin and β-Catenin target genes, and this circadian core clock gene may represent a novel target for colorectal cancer prevention and control.
Abstract: Colorectal cancer risk is increased in shift workers with presumed circadian disruption. Intestinal epithelial cell proliferation is gated throughout each day by the circadian clock. Period 2 (Per2) is a key circadian clock gene. Per2 mutant (Per2(m/m)) mice show an increase in lymphomas and deregulated expression of cyclin D and c-Myc genes that are key to proliferation control. We asked whether Per2 clock gene inactivation would accelerate intestinal and colonic tumorigenesis. The effects of PER2 on cell proliferation and beta-catenin were studied in colon cancer cell lines by its down-regulation following RNA interference. The effects of Per2 inactivation in vivo on beta-catenin and on intestinal and colonic polyp formation were studied in mice with Per2 mutation alone and in combination with an Apc mutation using polyp-prone Apc(Min/+) mice. Down-regulation of PER2 in colon cell lines (HCT116 and SW480) increases beta-catenin, cyclin D, and cell proliferation. Down-regulation of beta-catenin along with Per2 blocks the increase in cyclin D and cell proliferation. Per2(m/m) mice develop colonic polyps and show an increase in small intestinal mucosa beta-catenin and cyclin D protein levels compared with wild-type mice. Apc(Min/+)Per2(m/m) mice develop twice the number of small intestinal and colonic polyps, with more severe anemia and splenomegaly, compared with Apc(Min/+) mice. These data suggest that Per2 gene product suppresses tumorigenesis in the small intestine and colon by down-regulation of beta-catenin and beta-catenin target genes, and this circadian core clock gene may represent a novel target for colorectal cancer prevention and control.

Journal ArticleDOI
TL;DR: This study shows that activating mutations in not only exon 11 but also exons 8 and 9 are common in canine mast cell tumors, and shows that Ba/F3 cells can be used for the direct characterization of canine KIT mutants, eliminating the need to make equivalent mutations in the mouse or human genes.
Abstract: In the current study, we examined the types and frequency of KIT mutations in mast cell tumors from 191 dogs. Sequencing of reverse transcription-PCR products revealed alterations in 50 (26.2%) of the dogs. Most mutations were in exon 11 (n = 32), and of these, most were internal tandem duplications (n = 25) between residues 571 and 590. Within exon 11, there were two hotspots for mutations at codons 555-559 and 571-590. In addition, nine dogs had mutations in exon 8 and eight had mutations in exon 9. We selected the two most common mutants and two representative exon 11 mutants for further analysis. When expressed in Ba/F3 cells, they were constitutively tyrosine phosphorylated and induced growth factor-independent cell proliferation. AG1296, a tyrosine kinase inhibitor, dose dependently inhibited both the tyrosine phosphorylation of these mutants and their induction of growth factor-independent proliferation. This study shows that activating mutations in not only exon 11 but also exons 8 and 9 are common in canine mast cell tumors. These results also show that Ba/F3 cells can be used for the direct characterization of canine KIT mutants, eliminating the need to make equivalent mutations in the mouse or human genes.

Journal ArticleDOI
TL;DR: It is shown that the HDAC inhibitor LBH589 down-regulates DNA methyltransferase 1 (DNMT1) protein expression in the nucleus of human breast cancer cells, and a new role for HDAC1 is suggested and a novel mechanism of action for theHDAC inhibitors as down- Regulators of DNMT1 is identified.
Abstract: Histone deacetylases (HDAC) play a critical role in chromatin modification and gene expression. Recent evidence indicates that HDACs can also regulate functions of nonhistone proteins by catalyzing the removal of acetylated lysine residues. Here, we show that the HDAC inhibitor LBH589 down-regulates DNA methyltransferase 1 (DNMT1) protein expression in the nucleus of human breast cancer cells. Cotreatment with the proteasomal inhibitor MG-132 abolishes the ability of LBH589 to reduce DNMT1, suggesting that the proteasomal pathway mediates DNMT1 degradation on HDAC inhibition. Deletion of the NH(2)-terminal 120 amino acids of DNMT1 diminishes LBH589-induced ubiquitination, indicating that this domain is essential for its proteasomal degradation. DNMT1 recruits the molecular chaperone heat shock protein 90 (Hsp90) to form a chaperone complex. Treatment with LBH589 induces hyperacetylation of Hsp90, thereby inhibiting the association of DNMT1 with Hsp90 and promoting ubiquitination of DNMT1. In addition, inactivation of HDAC1 activity by small interfering RNA and MS-275 is associated with Hsp90 acetylation in conjunction with reduction of DNMT1 protein expression. We conclude that the stability of DNMT1 is maintained in part through its association with Hsp90. Disruption of Hsp90 function by HDAC inhibition is a unique mechanism that mediates the ubiquitin-proteasome pathway for DNMT1 degradation. Our studies suggest a new role for HDAC1 and identify a novel mechanism of action for the HDAC inhibitors as down-regulators of DNMT1.

Journal ArticleDOI
TL;DR: It is reported that the endoplasmic reticulum chaperone GRP78/BiP is generally highly elevated in the vasculature derived from human glioma specimens, both in situ in tissue and in vitro in primary cell cultures, compared with minimalGRP78 expression in normal brain tissues and blood vessels.
Abstract: The tumor vasculature is essential for tumor growth and survival and is a key target for anticancer therapy. Glioblastoma multiforme, the most malignant form of brain tumor, is highly vascular and contains abnormal vessels, unlike blood vessels in normal brain. Previously, we showed that primary cultures of human brain endothelial cells, derived from blood vessels of malignant glioma tissues (TuBEC), are physiologically and functionally different from endothelial cells derived from nonmalignant brain tissues (BEC) and are substantially more resistant to apoptosis. Resistance of TuBEC to a wide range of current anticancer drugs has significant clinical consequences as it represents a major obstacle toward eradication of residual brain tumor. We report here that the endoplasmic reticulum chaperone GRP78/BiP is generally highly elevated in the vasculature derived from human glioma specimens, both in situ in tissue and in vitro in primary cell cultures, compared with minimal GRP78 expression in normal brain tissues and blood vessels. Interestingly, TuBEC constitutively overexpress GRP78 without concomitant induction of other major unfolded protein response targets. Resistance of TuBEC to chemotherapeutic agents such as CPT-11, etoposide, and temozolomide can be overcome by knockdown of GRP78 using small interfering RNA or chemical inhibition of its catalytic site. Conversely, overexpression of GRP78 in BEC rendered these cells resistant to drug treatments. Our findings provide the proof of principle that targeting GRP78 will sensitize the tumor vasculature to chemotherapeutic drugs, thus enhancing the efficacy of these drugs in combination therapy for glioma treatment.

Journal ArticleDOI
TL;DR: The findings suggest that the Let-7–mediated repression of HMGA2 mechanism can be an important molecular event in leiomyoma growth.
Abstract: High-mobility group A2 (HMGA2) is commonly overexpressed in large leiomyomas. HMGA2 is an important regulator of cell growth, differentiation, apoptosis, and transformation. As a predicted target of Let-7 microRNAs (Let-7s), HMGA2 can be repressed by Let-7s in vitro. MicroRNA profiling analysis revealed that Let-7s were significantly dysregulated in uterine leiomyomas: high in small leiomyomas and lower in large leiomyomas. To evaluate whether Let-7 repression of HMGA2 plays a major role in leiomyomas, we analyzed the molecular relationship of HMGA2 and Let-7s, both in vitro and in vivo. We first characterized that exogenous Let-7 microRNAs could directly repress the dominant transcript of HMGA2, HMGA2a. This repression was also identified for two cryptic HMGA2 transcripts in primary leiomyoma cultures. Second, we found that the endogenous Let-7s were biologically active and played a major role in the regulation of HMGA2. Then, we illustrated that Let-7 repression of HMGA2 inhibited cellular proliferation. Finally, we examined the expression levels of Let-7c and HMGA2 in a large cohort of leiomyomas (n = 120), and we found high levels of Let-7 and low levels of HMGA2 in small leiomyomas, and low levels of Let-7 and high levels of HMGA2 in large leiomyomas. Our findings suggest that the Let-7–mediated repression of HMGA2 mechanism can be an important molecular event in leiomyoma growth. (Mol Cancer Res 2008;6(4):663–73)

Journal ArticleDOI
TL;DR: Findings support a mechanism by which the nature of the Wnt7a signal in the endometrium is dependent on the Fzd repertoire of the cell and can be regulated by SFRP4.
Abstract: In the endometrium, hormonal effects on epithelial cells are often elicited through stromal hormone receptors via unknown paracrine mechanisms. Several lines of evidence support the hypothesis that Wnts participate in stromal-epithelial cell communication. Wnt7a is expressed in the luminal epithelium, whereas the extracellular modulator of Wnt signaling, secreted frizzled-related protein 4 (SFRP4), is localized to the stroma. Studies have reported that SFRP4 expression is significantly decreased in endometrial carcinoma and that both SFRP4 and Wnt7a genes are differentially regulated in response to estrogenic stimuli. Aberrant Wnt7a signaling irrevocably causes organ defects and infertility and contributes to the onset of disease. However, specific frizzled receptors (Fzd) that bind Wnt7a and the particular signal transduction pathway each Wnt7a-Fzd pair activates have not been identified. Additionally, the function of SFRP4 in the endometrium has not been addressed. We show here that Wnt7a coimmunoprecipitates with Fzd5, Fzd10, and SFRP4 in Ishikawa cells. Wnt7a binding to Fzd5 was shown to activate beta-catenin/canonical Wnt signaling and increase cellular proliferation. Conversely, Wnt7a signaling mediated by Fzd10 induced a noncanonical c-Jun NH2-terminal kinase-responsive pathway. SFRP4 suppresses activation of Wnt7a signaling in both an autocrine and paracrine manner. Stable overexpression of SFRP4 and treatment with recombinant SFRP4 protein inhibited endometrial cancer cell growth in vitro. These findings support a mechanism by which the nature of the Wnt7a signal in the endometrium is dependent on the Fzd repertoire of the cell and can be regulated by SFRP4.

Journal ArticleDOI
TL;DR: These findings show that primary MM cells frequently harbor PIR NF-κB activity that is further enhanced by the presence of patient-derived BMSCs, and suggest that this activity is likely relevant to the drug resistance development in some patients.
Abstract: Bortezomib (Velcade/PS341), a proteasome inhibitor used in the treatment of multiple myeloma (MM), can inhibit activation of nuclear factor-kappaB (NF-kappaB), a family of transcription factors often deregulated and constitutively activated in primary MM cells. NF-kappaB can be activated via several distinct mechanisms, including the proteasome inhibitor-resistant (PIR) pathway. It remains unknown what fraction of primary MM cells harbor constitutive NF-kappaB activity maintained by proteasome-dependent mechanisms. Here, we report an unexpected finding that constitutive NF-kappaB activity in 10 of 14 primary MM samples analyzed is refractory to inhibition by bortezomib. Moreover, when MM cells were cocultured with MM patient-derived bone marrow stromal cells (BMSC), microenvironment components critical for MM growth and survival, further increases in NF-kappaB activity were observed that were also refractory to bortezomib. Similarly, MM-BMSCs caused PIR NF-kappaB activation in the RPMI8226 MM cell line, leading to increased NF-kappaB-dependent transcription and resistance to bortezomib-induced apoptosis. Our findings show that primary MM cells frequently harbor PIR NF-kappaB activity that is further enhanced by the presence of patient-derived BMSCs. They also suggest that this activity is likely relevant to the drug resistance development in some patients. Further elucidation of the mechanism of PIR NF-kappaB regulation could lead to the identification of novel diagnostic biomarkers and/or therapeutic targets for MM treatment.

Journal ArticleDOI
TL;DR: It is revealed that mebendazole inhibits melanoma growth with an average IC50 of 0.32 μmol/L and preferentially induces apoptosis in melanoma cells compared with melanocytes, and is identified as a potent, melanoma-specific cytotoxic agent.
Abstract: Most metastatic melanoma patients fail to respond to available therapy, underscoring the need for novel approaches to identify new effective treatments. In this study, we screened 2,000 compounds from the Spectrum Library at a concentration of 1 μmol/L using two chemoresistant melanoma cell lines (M-14 and SK-Mel-19) and a spontaneously immortalized, nontumorigenic melanocyte cell line (melan-a). We identified 10 compounds that inhibited the growth of the melanoma cells yet were largely nontoxic to melanocytes. Strikingly, 4 of the 10 compounds (mebendazole, albendazole, fenbendazole, and oxybendazole) are benzimidazoles, a class of structurally related, tubulin-disrupting drugs. Mebendazole was prioritized to further characterize its mechanism of melanoma growth inhibition based on its favorable pharmacokinetic profile. Our data reveal that mebendazole inhibits melanoma growth with an average IC 50 of 0.32 μmol/L and preferentially induces apoptosis in melanoma cells compared with melanocytes. The intrinsic apoptotic response is mediated through phosphorylation of Bcl-2, which occurs rapidly after treatment with mebendazole in melanoma cells but not in melanocytes. Phosphorylation of Bcl-2 in melanoma cells prevents its interaction with proapoptotic Bax, thereby promoting apoptosis. We further show that mebendazole-resistant melanocytes can be sensitized through reduction of Bcl-2 protein levels, showing the essential role of Bcl-2 in the cellular response to mebendazole-mediated tubulin disruption. Our results suggest that this screening approach is useful for identifying agents that show promise in the treatment of even chemoresistant melanoma and identifies mebendazole as a potent, melanoma-specific cytotoxic agent. (Mol Cancer Res 2008;6(8):1308–15)

Journal ArticleDOI
TL;DR: The results suggest that overexpression or activation of Pak4 is a key step in oncogenic transformation, due to its ability to promote cell survival and subsequent uncontrolled proliferation.
Abstract: Pak4 is a member of the B group of p21-activated (Pak) kinases, originally identified as an effector protein for Cdc42. Although Pak4 is expressed at low levels in most adult tissues, it is highly overexpressed in tumor cell lines. Here, we show that Pak4 is also overexpressed in primary tumors, including colon, esophageal, and mammary tumors. Overexpression of Pak4 also leads to tumor formation in athymic mice, whereas deletion of Pak4 inhibits tumorigenesis. Although a constitutively active Pak4 mutant was previously shown to promote oncogenic transformation in cultured cells, our results are the first to show that Pak4 also promotes tumorigenesis in experimental animals. Furthermore, these results show for the first time that not only constitutively active Pak4, but also wild-type Pak4, is transforming, when experimental animals are used. These results are highly significant because wild-type Pak4, rather than activated Pak4, is overexpressed in tumor cells. Our results suggest that overexpression or activation of Pak4 is a key step in oncogenic transformation, due to its ability to promote cell survival and subsequent uncontrolled proliferation. The finding that Pak4 is up-regulated in so many types of cancers indicates that Pak4 may play a vital role in a wide range of different types of cancer. This makes it an attractive candidate for drug therapy for different types of cancer.

Journal ArticleDOI
TL;DR: Interestingly, although all five studied cell lines showed global histone acetylation and MDR1 up-regulation upon HDAC inhibition, only those cells with removal of the repressive mark, and recruitment of RNA polymerase II and a chromatin remodeling factor Brg-1 from the ABCG2 promoter, showed increasedABCG2 expression.
Abstract: ABCG2 is a ubiquitous ATP-binding cassette transmembrane protein that is important in pharmacology and may play a role in stem cell biology and clinical drug resistance. To study the mechanism(s) regulating ABCG2 expression, we used ChIP to investigate the levels of acetylated histone H3, histone deacetylases (HDAC), histone acetyltransferases, and other transcription regulatory proteins associated with the ABCG2 promoter. Following selection for drug resistance and the subsequent overexpression of ABCG2, an increase in acetylated histone H3 but a decrease in class I HDACs associated with the ABCG2 promoter was observed. Permissive histone modifications, including an increase in histone H3 lysine 4 trimethylation (Me(3)-K4 H3) and histone H3 serine 10 phosphorylation (P-S10 H3), were observed accompanying development of the resistance phenotype. These changes mirrored those in some cell lines treated with a HDAC inhibitor, romidepsin. A repressive histone mark, trimethylated histone H3 lysine 9 (Me(3)-K9 H3), was found in untreated parental cells and cells that did not respond to HDAC inhibition with ABCG2 up-regulation. Interestingly, although all five studied cell lines showed global histone acetylation and MDR1 up-regulation upon HDAC inhibition, only those cells with removal of the repressive mark, and recruitment of RNA polymerase II and a chromatin remodeling factor Brg-1 from the ABCG2 promoter, showed increased ABCG2 expression. In the remaining cell lines, HDAC1 binding in association with the repressive Me3-K9 H3 mark apparently constrains the effect of HDAC inhibition on ABCG2 expression. These studies begin to address the differential effect of HDAC inhibitors widely observed in gene expression studies.

Journal ArticleDOI
TL;DR: It is shown that overexpression of HMGA2 leads to a transformed phenotype in cultured lung cells derived from normal tissue, and this results indicate that HM GA2 is an oncogene important in the pathogenesis of human lung cancer.
Abstract: Although previous studies have established a prominent role for HMGA1 (formerly HMG-I/Y) in aggressive human cancers, the role of HMGA2 (formerly HMGI-C) in malignant transformation has not been clearly defined. The HMGA gene family includes HMGA1, which encodes the HMGA1a and HMGA1b protein isoforms, and HMGA2, which encodes HMGA2. These chromatin-binding proteins function in transcriptional regulation and recent studies also suggest a role in cellular senescence. HMGA1 proteins also appear to participate in cell cycle regulation and malignant transformation, whereas HMGA2 has been implicated primarily in the pathogenesis of benign, mesenchymal tumors. Here, we show that overexpression of HMGA2 leads to a transformed phenotype in cultured lung cells derived from normal tissue. Conversely, inhibiting HMGA2 expression blocks the transformed phenotype in metastatic human non-small cell lung cancer cells. Moreover, we show that HMGA2 mRNA and protein are overexpressed in primary human lung cancers compared with normal tissue or indolent tumors. In addition, there is a statistically significant correlation between HMGA2 protein staining by immunohistochemical analysis and tumor grade (P < 0.001). Our results indicate that HMGA2 is an oncogene important in the pathogenesis of human lung cancer. Although additional studies with animal models are needed, these findings suggest that targeting HMGA2 could be therapeutically beneficial in lung cancer and other cancers characterized by increased HMGA2 expression.