scispace - formally typeset
Search or ask a question

Showing papers in "Nanophotonics in 2015"


Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of surface-phonon-polariton (SPhP) modes in polar dielectric crystals and the associ- ated new developments in the field of SPhPs.
Abstract: The excitation of surface-phonon-polariton (SPhP) modes in polar dielectric crystals and the associ- ated new developments in the field of SPhPs are reviewed. The emphasis of this work is on providing an understand- ing of the general phenomenon, including the origin of the Reststrahlen band, the role that optical phonons in polar dielectric lattices play in supporting sub-diffrac- tion-limited modes and how the relatively long opti- cal phonon lifetimes can lead to the low optical losses observed within these materials. Based on this overview, the achievements attained to date and the potential tech- nological advantages of these materials are discussed for localized modes in nanostructures, propagating modes on surfaces and in waveguides and novel metamaterial designs, with the goal of realizing low-loss nanophoton- ics and metamaterials in the mid-infrared to terahertz spectral ranges.

575 citations


Journal ArticleDOI
TL;DR: In this paper, a variety of optical and electrical properties of indium tin oxide (ITO) for different processing conditions, and show that ITO-based plasmonic electro-optic modulators have the potential to significantly outperform diffractionlimited devices.
Abstract: Abstract: Advances in opto-electronics are often led by discovery and development of materials featuring unique properties. Recently, the material class of transparent conductive oxides (TCO) has attracted attention for active photonic devices on-chip. In particular, indium tin oxide (ITO) is found to have refractive index changes on the order of unity. This property makes it possible to achieve electrooptic modulation of sub-wavelength device scales, when thin ITO films are interfaced with optical light confinement techniques such as found in plasmonics; optical modes are compressed to nanometer scale to create strong light-matter interactions. Here we review efforts towards utilizing this novel material for high performance and ultra-compact modulation. While high performance metrics are achieved experimentally, there are open questions pertaining to the permittivity modulation mechanism of ITO. Finally, we review a variety of optical and electrical properties of ITO for different processing conditions, and show that ITO-based plasmonic electro-optic modulators have the potential to significantly outperform diffractionlimited devices.

176 citations


Journal ArticleDOI
TL;DR: A review of recent advanced reports on plasmon-enhanced fluorescence (PEF) can be found in this article, where the authors provide an introduction to PEF, illustrates the current progress in the design of metallic nanostructures for efficient fluorescence signal amplification that utilises propagating and localised surface plasmons.
Abstract: Abstract The optically generated collective electron density waves on metal–dielectric boundaries known as surface plasmons have been of great scientific interest since their discovery. Being electromagnetic waves on gold or silver nanoparticle’s surface, localised surface plasmons (LSP) can strongly enhance the electromagnetic field. These strong electromagnetic fields near the metal surfaces have been used in various applications like surface enhanced spectroscopy (SES), plasmonic lithography, plasmonic trapping of particles, and plasmonic catalysis. Resonant coupling of LSPs to fluorophore can strongly enhance the emission intensity, the angular distribution, and the polarisation of the emitted radiation and even the speed of radiative decay, which is so-called plasmon enhanced fluorescence (PEF). As a result, more and more reports on surface-enhanced fluorescence have appeared, such as SPASER-s, plasmon assisted lasing, single molecule fluorescence measurements, surface plasmoncoupled emission (SPCE) in biological sensing, optical orbit designs etc. In this review, we focus on recent advanced reports on plasmon-enhanced fluorescence (PEF). First, the mechanism of PEF and early results of enhanced fluorescence observed by metal nanostructure will be introduced. Then, the enhanced substrates, including periodical and nonperiodical nanostructure, will be discussed and the most important factor of the spacer between molecule and surface and wavelength dependence on PEF is demonstrated. Finally, the recent progress of tipenhanced fluorescence and PEF from the rare-earth doped up-conversion (UC) and down-conversion (DC) nanoparticles (NPs) are also commented upon. This review provides an introduction to fundamentals of PEF, illustrates the current progress in the design of metallic nanostructures for efficient fluorescence signal amplification that utilises propagating and localised surface plasmons.

159 citations


Journal ArticleDOI
TL;DR: In this article, the authors provide a systematic overview of various compact optical modulator designs that utilize a class of the most promising new materials as the active layer or core, namely, transparent conducting oxides.
Abstract: Abstract: The ongoing quest for ultra-compact optical devices has reached a bottleneck due to the diffraction limit in conventional photonics. New approaches that provide subwavelength optical elements, and therefore lead to miniaturization of the entire photonic circuit, are urgently required. Plasmonics, which combines nanoscale light confinement and optical-speed processing of signals, has the potential to enable the next generation of hybrid information-processing devices, which are superior to the current photonic dielectric components in terms of speed and compactness. New plasmonic materials (other than metals), or optical materials with metal-like behavior, have recently attracted a lot of attention due to the promise they hold to enable low-loss, tunable, CMOScompatible devices for photonic technologies. In this review, we provide a systematic overview of various compact optical modulator designs that utilize a class of the most promising new materials as the active layer or core— namely, transparent conducting oxides. Such modulators can be made low-loss, compact, and exhibit high tunability while offering low cost and compatibility with existing semiconductor technologies. A detailed analysis of different configurations and their working characteristics, such as their extinction ratio, compactness, bandwidth, and losses, is performed identifying the most promising designs.

147 citations


Journal ArticleDOI
TL;DR: In this paper, the basic techniques and technological challenges of 3D integrated photonics fabricated using ultrafast laser inscription are reviewed as well as the most recent progress in the fields of astrophotonics, optical communication, quantum photonics, emulation of quantum systems, optofluidics and sensing.
Abstract: Abstract Since the discovery that tightly focused femtosecond laser pulses can induce a highly localised and permanent refractive index modification in a large number of transparent dielectrics, the technique of ultrafast laser inscription has received great attention from a wide range of applications. In particular, the capability to create three-dimensional optical waveguide circuits has opened up new opportunities for integrated photonics that would not have been possible with traditional planar fabrication techniques because it enables full access to the many degrees of freedom in a photon. This paper reviews the basic techniques and technological challenges of 3D integrated photonics fabricated using ultrafast laser inscription as well as reviews the most recent progress in the fields of astrophotonics, optical communication, quantum photonics, emulation of quantum systems, optofluidics and sensing.

141 citations


Journal ArticleDOI
TL;DR: In this paper, a review of the applications of 2D materials, including both elemental and compound 2D material, for nanophotonics application from detectors, modulators to plasmonics and light generating devices is presented.
Abstract: Abstract In this article, we review the various topics on the applications of 2D materials, including both elemental and compound 2D materials, for nanophotonics application from detectors, modulators to plasmonics and light generating devices. With this review, we hope to provide an overview of the past development in this field while offering our perspectives on its future directions.

108 citations


Journal ArticleDOI
TL;DR: Optical properties of colloidal plasmonic tita-nium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmit-tance measurements.
Abstract: Optical properties of colloidal plasmonic tita- nium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmit- tance measurements. Single crystal titanium nitride cubic nanoparticles with an average size of 50 nm, which was found to be the optimum size for cellular uptake with gold nanoparticles (1), exhibit plasmon resonance in the biolog- ical transparency window and demonstrate a high absorp- tion efficiency. A self-passivating native oxide at the sur- face of the nanoparticles provides an additional degree of freedom for surface functionalization. The titanium oxide shell surrounding the plasmonic core can create new op- portunities for photocatalytic applications.

91 citations


Journal ArticleDOI
TL;DR: In this paper, the authors review state-of-the-art photodetection technologies in the telecommunications spectrum based on different material systems, including traditional semiconductors such as InGaAs, Si, Ge and HgCdTe, as well as recently developed systems such as low-dimensional materials (e.g. graphene, carbon nanotube, etc.) and noble metal plasmons.
Abstract: Abstract Photodetectors hold a critical position in optoelectronic integrated circuits, and they convert light into electricity. Over the past decades, high-performance photodetectors (PDs) have been aggressively pursued to enable high-speed, large-bandwidth, and low-noise communication applications. Various material systems have been explored and different structures designed to improve photodetection capability as well as compatibility with CMOS circuits. In this paper, we review state-of-theart photodetection technologies in the telecommunications spectrum based on different material systems, including traditional semiconductors such as InGaAs, Si, Ge and HgCdTe, as well as recently developed systems such as low-dimensional materials (e.g. graphene, carbon nanotube, etc.) and noble metal plasmons. The corresponding material properties, fundamental mechanisms, fabrication, theoretical modelling and performance of the typical PDs are presented, including the emerging directions and perspectives of the PDs for optoelectronic integration applications are discussed.

78 citations


Journal ArticleDOI
TL;DR: In this paper, the authors review the recent development in graphene-plasmonic devices and identify some of the key challenges for practical applications of such hybrid devices, as well as some of their key challenges in practical applications.
Abstract: Abstract: Graphene has recently emerged as a viable platform for integrated optoelectronic and hybrid photonic devices because of its unique properties. The optical properties of graphene can be dynamically controlled by electrical voltage and have been used to modulate the plasmons in noble metal nanostructures. Graphene has also been shown to support highly confined intrinsic plasmons, with properties that can be tuned in the wavelength range of 2 μm to 100 μm. Here we review the recent development in graphene-plasmonic devices and identify some of the key challenges for practical applications of such hybrid devices.

72 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the recent breakthroughs in the physical understanding of such coupled systems and the different systems where nanoparticles on top of the spacer layer are either isolated/random or form regular arrays.
Abstract: Abstract Plasmonic film-nanoparticles coupled systems have had a renewed interest for the past 5 years both for the richness of the provided plasmonic modes and for their high technological potential. Many groups started to investigate the optical properties of film-nanoparticles coupled systems, as to whether the spacer layer thickness is tens of nanometers thick or goes down to a few nanometers or angstroms, even reaching contact. This article reviews the recent breakthroughs in the physical understanding of such coupled systems and the different systems where nanoparticles on top of the spacer layer are either isolated/random or form regular arrays. The potential for applications, especially as perfect absorbers or transmitters is also put into evidence.

65 citations



Journal ArticleDOI
TL;DR: In this paper, a wide range of efforts are reviewed to stress that there is no pure silicon or even group IV photonics per se, rather, the future of the field of integrated photonics appears to be one of heterogenization, where a variety of different materials and waveguide platforms will be used for different purposes with the common feature of integrating them on a single substrate, most notably silicon.
Abstract: Abstract Silicon photonics has been established as a mature and promising technology for optoelectronic integrated circuits, mostly based on the silicon-on-insulator (SOI) waveguide platform. However, not all optical functionalities can be satisfactorily achieved merely based on silicon, in general, and on the SOI platform, in particular. Long-known shortcomings of silicon-based integrated photonics are optical absorption (in the telecommunication wavelengths) and feasibility of electrically-injected lasers (at least at room temperature). More recently, high two-photon and free-carrier absorptions required at high optical intensities for third-order optical nonlinear effects, inherent lack of second-order optical nonlinearity, low extinction ratio of modulators based on the free-carrier plasma effect, and the loss of the buried oxide layer of the SOI waveguides at mid-infrared wavelengths have been recognized as other shortcomings. Accordingly, several novel waveguide platforms have been developing to address these shortcomings of the SOI platform. Most of these emerging platforms are based on heterogeneous integration of other material systems on silicon substrates, and in some cases silicon is integrated on other substrates. Germanium and its binary alloys with silicon, III–V compound semiconductors, silicon nitride, tantalum pentoxide and other high-index dielectric or glass materials, as well as lithium niobate are some of the materials heterogeneously integrated on silicon substrates. The materials are typically integrated by a variety of epitaxial growth, bonding, ion implantation and slicing, etch back, spin-on-glass or other techniques. These wide range of efforts are reviewed here holistically to stress that there is no pure silicon or even group IV photonics per se. Rather, the future of the field of integrated photonics appears to be one of heterogenization, where a variety of different materials and waveguide platforms will be used for different purposes with the common feature of integrating them on a single substrate, most notably silicon.

Journal ArticleDOI
TL;DR: In this article, a review of magneto plasmonics in the infrared frequencies with a focus on device designs and applications is presented, including one-way waveguides, filters, and beam-splitters.
Abstract: Due to their promising properties, surface mag- neto plasmons have attracted great interests in the field of plasmonics recently. Apart from flexible modulation of the plasmonic properties by an external magnetic field, sur- face magneto plasmons also promise nonreciprocal effect and multi-bands of propagation, which can be applied into the design of integrated plasmonic devices for biosensing and telecommunication applications. In the visible fre- quencies, because it demands extremely strong magnetic fields for the manipulation of metallic plasmonic mate- rials, nano-devices consisting of metals and magnetic materials based on surface magneto plasmon are difficult to be realized due to the challenges in device fabrication and high losses. In the infrared frequencies, highly-doped semiconductors can replace metals, owning to the lower incident wave frequencies and lower plasma frequencies. The required magnetic field is also low, which makes the tunable devices based on surface magneto plasmons more practically to be realized. Furthermore, a promising 2D material-graphene shows great potential in infrared mag- netic plasmonics. In this paper, we review the magneto plasmonics in the infrared frequencies with a focus on device designs and applications. We investigate surface magneto plasmons propagating in different structures, including plane surface structures and slot waveguides. Based on the fundamental investigation and theoretical studies, we illustrate various magneto plasmonic micro/ nano devices in the infrared, such as tunable waveguides, filters, and beam-splitters. Novel plasmonic devices such as one-way waveguides and broad-band waveguides are also introduced.

Journal ArticleDOI
TL;DR: In this article, the authors review the state of the art of the relaxation dynamics in Landau-quantized graphene focusing on microscopic insights into possible many-particle relaxation channels.
Abstract: In an external magnetic field, the energy of massless charge carriers in graphene is quantized into non-equidistant degenerate Landau levels including a zero-energy level. This extraordinary electronic dispersion gives rise to a fundamentally new dynamics of optically excited carriers. Here, we review the state of the art of the relaxation dynamics in Landau-quantized graphene focusing on microscopic insights into possible many-particle relaxation channels.We investigate optical excitation into a non equilibrium distribution followed by ultrafast carrier- carrier and carrier-phonon scattering processes. We reveal that surprisingly the Auger scattering dominates the relaxation dynamics in spite of the non-equidistant Landau quantization in graphene. Furthermore, we demonstrate how technologically relevant carrier multiplication can be achieved and discuss the possibility of optical gain in Landau-quantized graphene. The provided microscopic view on elementary many-particle processes can guide future experimental studies aiming at the design of novel graphene-based optoelectronic devices, such as highly efficient photodetectors, solar cells, and spectrally broad Landau level lasers.

Journal ArticleDOI
TL;DR: In this paper, the authors focus on structuring the field of active molecular plasmonics (AMP) based on the dimension of molecules and discuss the state of the art of AMP.
Abstract: Molecular plasmonics explores and exploits the molecule–plasmon interactions on metal nanostructures to harness light at the nanoscale for nanophotonic spectroscopy and devices. With the functional molecules and polymers that change their structural, electrical, and/or optical properties in response to external stimuli such as electric fields and light, one candynamically tune theplasmonic properties for enhanced or new applications, leading to a new research area known as active molecular plasmonics (AMP). Recent progress in molecular design, tailored synthesis, and self-assembly has enabled a variety of scenarios of plasmonic tuning for a broad range of AMP applications. Dimension (i.e., zero-, two-, and threedimensional) of the molecules on metal nanostructures has proved to be an effective indicator for defining the specific scenarios. In this review article, we focus on structuring the field of AMP based on the dimension of molecules and discussing the state of the art of AMP. Our perspective on the upcoming challenges and opportunities in the emerging field of AMP is also included.

Journal ArticleDOI
TL;DR: In this paper, the authors highlight the recent advances in studying single emitters in ZnO, engineering of optical cavities and practical nanophotonics devices including nanolasers and electrically triggered devices.
Abstract: Abstract The emerging field of nanophotonics initiated a dedicated study of single photon sources and optical resonators in new class of materials. One such material is zinc oxide (ZnO) that has been long considered only for classical light-emitting applications. However, it recently showed promise for quantum photonics technologies. In this review, we highlight the recent advances in studying single emitters in ZnO, engineering of optical cavities and practical nanophotonics devices including nanolasers and electrically triggered devices. We finalize with an outlook at this promising area, as well as provide perspectives and open questions in solid state nanophotonics employing ZnO.

Journal ArticleDOI
Hugen Yan1
TL;DR: In this paper, the application of bilayer graphene as a sensitive and fast photodetector is reviewed, and an outlook is given in the final part of the paper. But the authors focus on one specific two-dimensional material: bilayer GAs.
Abstract: Abstract Layered materials, such as graphene, transition metal dichacogenides and black phosphorus have attracted lots of attention recently. They are emerging novel materials in electronics and photonics, with tremendous potential in revolutionizing the traditional electronics and photonics industry. Marrying layered material to the nanophotonics is being proved fruitful. With the recent emphasis and development of metasurfaces in nanophotonics, atomically thin materials can find their unique position and strength in this field. In this article, I will focus on one specific two dimensional material: bilayer graphene. Basic physics will be reviewed, such as band-gap opening, electron-phonon interaction, phonon-plasmon interaction and Fano resonances in the optical response. Moreover, I will review the application of bilayer graphene as a sensitive and fast photodetector. An outlook will be given in the final part of the paper.

Journal ArticleDOI
TL;DR: In this article, a review of complex optical fields with spatially inhomogeneous state of polarizations and optical singularities is presented, and various nano-metallic surface designs that can produce and manipulate complex optical field with tailored characteristics in the optical far field is presented.
Abstract: Abstract Recently there is an increasing interest in complex optical fields with spatially inhomogeneous state of polarizations and optical singularities. Novel effects and phenomena have been predicted and observed for light beams with these unconventional states. Nanostructured metallic thin film offers unique opportunities to generate, manipulate and detect these novel fields. Strong interactions between nano-metallic surfaces and complex optical fields enable the development of highly compact and versatile functional devices and systems. In this review, we first briefly summarize the recent developments in complex optical fields. Various nano-metallic surface designs that can produce and manipulate complex optical fields with tailored characteristics in the optical far field will be presented. Nano-metallic surfaces are also proven to be very effective for receiving and detection of complex optical fields in the near field. Advances made in this nascent field may enable the design of novel photonic devices and systems for a variety of applications such as quantum optical information processing and integrated photonic circuits.

Journal ArticleDOI
TL;DR: It is demonstrated that a software architecture using innovations in machine learning and adaptive control provides an ideal integration platform for self-tuning optics, requiring no detailed or quantitatively accurate model of the physics.
Abstract: Abstract We demonstrate that a software architecture using innovations in machine learning and adaptive control provides an ideal integration platform for self-tuning optics. For mode-locked lasers, commercially available optical telecom components can be integrated with servocontrollers to enact a training and execution software module capable of self-tuning the laser cavity even in the presence of mechanical and/or environmental perturbations, thus potentially stabilizing a frequency comb. The algorithm training stage uses an exhaustive search of parameter space to discover best regions of performance for one or more objective functions of interest. The execution stage first uses a sparse sensing procedure to recognize the parameter space before quickly moving to the near optimal solution and maintaining it using the extremum seeking control protocol. The method is robust and equationfree, thus requiring no detailed or quantitatively accurate model of the physics. It can also be executed on a broad range of problems provided only that suitable objective functions can be found and experimentally measured.

Journal ArticleDOI
TL;DR: In this article, the optical properties of thin gold films with thickness varying from 2.5 nm to 30 nm were investigated and a theory based on the selfconsistent solution of the Schrödinger equation and the Poisson equation was proposed and its predictions agree well with experimental results.
Abstract: Abstract The optical properties of thin gold films with thickness varying from 2.5 nm to 30 nm are investigated. Due to the quantum size effect, the optical constants of the thin gold film deviate from the Drude model for bulk material as film thickness decreases, especially around 2.5 nm, where the electron energy level becomes discrete. A theory based on the self-consistent solution of the Schrödinger equation and the Poisson equation is proposed and its predictions agree well with experimental results.

Journal ArticleDOI
TL;DR: In this paper, the authors summarize recent efforts in understanding the interplay of various temperature-dependent parameters, and study their effects on opti- cal mode and emission characteristics, and their performance is evaluated.
Abstract: As the field of semiconductor nanolasers becomes mature in terms of both the miniaturization to the true sub-wavelength scale, and the realization of room temperature devices, the integrated treatment of multi- ple design aspects beyond pure electromagnetic consid- eration becomes necessary to further advance the field. In this review, we focus on one such design aspect: tempera- ture effects in nanolasers. We summarize recent efforts in understanding the interplay of various temperature- dependent parameters, and study their effects on opti- cal mode and emission characteristics. Building on this knowledge, nanolasers with improved thermal perfor- mance can be designed, and their performance evaluated. Although this review focuses on metal-clad semiconduc- tor lasers because of their suitability for dense chip-scale integration, these thermal considerations also apply to the broader field of nanolasers.

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a novel droplet-shaped near-field transducer, which takes full advantage of a recenltly proposed Mach-Zehnder Interferometer (MZI), a coupling arrangement that allows optimal coupling of light to the transducers.
Abstract: Abstract Two main ingredients of plasmonics are surface plasmon polaritons (SPP) and localized surface plasmon resonances (LSPR) as they provide a high degree of concentration of electromagnetic fields in the vicinity of metal surfaces, which is well beyond that allowed by the diffraction limit of optics. Those properties have been used in the new technique of heat assisted magnetic recording (HAMR) to overcome an existing limit of conventional magnetic recording by utilizing a near-field transducer (NFT). The NFT designs are based on excitation of surface plasmons on a metal structure, which re-radiate with a subdiffraction limited light spot confined in the near field. In this paper, we propose a novel “droplet”-shaped NFT, which takes full advantage of a recenltly proposed Mach–Zehnder Interferometer (MZI), a coupling arrangement that allows optimal coupling of light to the transducer. The droplet design ensures better impedance match with the recording media and, consequently, better coupling of power. The droplet design results in very high enhancement of the electric field and allows the confinement of light in a spot size much smaller than the present stateof- the-art lollipop transducer.

Journal ArticleDOI
TL;DR: In this paper, a planar array of Archimedean nanospirals was used for second-harmonic generation from a Ti:sapphire oscillator tuned to 800 nm wavelength.
Abstract: The enhanced electric field at plasmonic resonances in nanoscale antennas can lead to efficient harmonic generation, especially when the plasmonic geometry is asymmetric on either inter-particle or intra-particle levels. The planar Archimedean nanospiral offers a unique geometrical asymmetry for second-harmonic generation (SHG) because the SHG results neither from arranging centrosymmetric nanoparticles in asymmetric groupings, nor from noncentrosymmetric nanoparticles that retain a local axis of symmetry. Here we report forward SHG from planar arrays of Archimedean nanospirals using 15 fs pulse from a Ti:sapphire oscillator tuned to 800 nm wavelength. The measured harmonic-generation efficiencies are 2.6•10-9, 8•10-9 and 1.3•10-8 for left-handed circular, linear, and right-handed circular polarizations, respectively.

Journal ArticleDOI
Yuchao Li1, Hongbao Xin1, Chang Cheng1, Yao Zhang1, Baojun Li1 
TL;DR: In this paper, an optical method for separation and controllable delivery of cells by using an abruptly tapered fiber probe is reported, by launching a laser beam at the wavelength of 980 nm into the fiber, a mixture of cells with sizes of ~5 and 3 μm and poly(methyl methacrylate) particles with size of 5 μm are separated into three chains along the direction of propagation of light.
Abstract: Abstract Cell separation and delivery have recently gained significant attention in biological and biochemical studies. In thiswork, an optical method for separation and controllable delivery of cells by using an abruptly tapered fiber probe is reported. By launching a laser beam at the wavelength of 980 nm into the fiber, a mixture of cells with sizes of ~5 and ~3 μm and poly(methyl methacrylate) particles with size of 5 μm are separated into three chains along the direction of propagation of light. The cell and particle chains are delivered in three dimensions over 600 μm distance. Experimental results are interpreted by numerical simulations. Optical forces and forward migration velocities of different particles and cells are calculated and discussed.

Journal ArticleDOI
TL;DR: In this article, the authors proposed a new conceptual insight with regard to novel quenching and gain mechanisms that could potentially address the performance limitations of III-V SPADs.
Abstract: Abstract While silicon single-photon avalanche diodes (SPAD) have reached very high detection efficiency and timing resolution, their use in fibre-optic communications, optical free space communications, and infrared sensing and imaging remains limited. III-V compounds including InGaAs and InP are the prevalent materials for 1550 nm light detection. However, even the most sensitive 1550 nm photoreceivers in optical communication have a sensitivity limit of a few hundred photons. Today, the only viable approach to achieve single-photon sensitivity at 1550 nm wavelength from semiconductor devices is to operate the avalanche detectors in Geiger mode, essentially trading dynamic range and speed for sensitivity. As material properties limit the performance of Ge and III-V detectors, new conceptual insight with regard to novel quenching and gain mechanisms could potentially address the performance limitations of III-V SPADs. Novel designs that utilise internal self-quenching and negative feedback can be used to harness the sensitivity of single-photon detectors,while drastically reducing the device complexity and increasing the level of integration. Incorporation of multiple gain mechanisms, together with self-quenching and built-in negative feedback, into a single device also hold promise for a new type of detector with single-photon sensitivity and large dynamic range.

Journal ArticleDOI
TL;DR: In this article, the authors introduce the recent results in the field of evanescent-wave-based refractive index sensing and surface enhanced Raman scattering (SERS)-based sensing, both of which are promising platforms for label-free optical biosensors.
Abstract: Abstract: Label-free optical biosensing technologies have superior abilities of quantitative analysis, unmodified targets, and ultrasmall sample volume, compared to conventional fluorescence-label-based sensing techniques, in detecting various biomolecules. In this review article, we introduce our recent results in the field of evanescent-wavebased refractive index sensing and surface enhanced Raman scattering (SERS)-based sensing, both of which are promising platforms for label-free optical biosensors. First, silicon-on-insulator (SOI) nanowire waveguide and metallic surface plasmon resonance (SPR)-based refractive index sensing are discussed. In order to improve the detection limit, phase interrogation techniques are introduced to these types of sensors based on prism-coupled SPR and SOI microring resonators. A detection limit in the order of 10−6 refractive index unit is achieved. Detection of 16.7 pM anti-IgG is also demonstrated based on the SPR devices. Second, SERS substrates based on various nanometallic structures are discussed. Metallic nanowire arrays and inverted nanopyramids and grooves with a thin metal surface are fabricated based on anisotropic wetetching of silicon substrates. Both structures have demonstrated a Raman signal enhancement on the order of 107. In order to improve the extraction efficiency of the Raman signal at a high wave number, a nano-bowtie array substrate is fabricated, which exhibits double resonances at both the excitation wavelength and the desired Raman scattering wavelength. Experimental results have shown that this double-resonance structure can further enhance the received Raman signal, as compared to conventional SERS substrates with only one resonance at the excitation wavelength.

Journal ArticleDOI
TL;DR: In this article, the spin memory of an individual or pairs of Mn atoms is modeled by the coherent spin dynamics of the coupled electronic and nuclear spin of the Mn atom optically dressed by a resonant laser field.
Abstract: The control of single spins in solids is a key but challenging step for any spin-based solid-state quantum-computing device. Thanks to their expected long coherence time, localized spins on magnetic atoms in a semiconductor host could be an interesting media to store quantum information in the solid state. Optical probing and control of the spin of individual or pairs of Mn atoms (S=5/2) have been obtained in II-VI and III-V semiconductor quantum dots during the last years. In this paper , we review recently developed optical control experiments of the spin of an individual Mn atoms in II-VI semiconductor self-assembled or strain free quantum dots. We first show that the fine structure of the Mn atom and especially a strained induced magnetic anisotropy is the main parameter controlling the spin memory of the magnetic atom at zero magnetic field. We then demonstrate that the energy of any spin state of a Mn atom or pairs of Mn atom can be independently tuned by using the optical Stark effect induced by a resonant laser field. The strong coupling with the resonant laser field modifies the Mn fine structure and consequently its dynamics. We then describe the spin dynamics of a Mn atom under this strong resonant optical excitation. In addition to standard optical pumping expected for a resonant excitation, we show that the Mn spin population can be trapped in the state which is resonantly excited. This effect is modeled considering the coherent spin dynamics of the coupled electronic and nuclear spin of the Mn atom optically dressed by a resonant laser field. Finally, we discuss the spin dynamics of a Mn atom in strain free quantum dots and show that these structures should permit a fast optical coherent control of an individual Mn spin.

Journal ArticleDOI
TL;DR: In this paper, the authors show that the threshold fluence Fth of laser-induced damage (LID) is a greatly limiting factor for the proposed and tested schemes along these lines.
Abstract: Abstract High-harmonic generation (HHG) has been established as an indispensable tool in optical spectroscopy. This effect arises for instance upon illumination of a noble gas with sub-picosecond laser pulses at focussed intensities significantly greater than 1012W/cm2. HHG provides a coherent light source in the extreme ultraviolet (XUV) spectral region, which is of importance in inner shell photo ionization of many atoms and molecules. Additionally, it intrinsically features light fields with unique temporal properties. Even in its simplest realization, XUV bursts of sub-femtosecond pulse lengths are released. More sophisticated schemes open the path to attosecond physics by offering single pulses of less than 100 attoseconds duration. Resonant optical antennas are important tools for coupling and enhancing electromagnetic fields on scales below their free-space wavelength. In a special application, placing field-enhancing plasmonic nano antennas at the interaction site of an HHG experiment has been claimed to boost local laser field strengths, from insufficient initial intensities to sufficient values. This was achieved with the use of arrays of bow-tie-shaped antennas of ∼ 100nm in length. However, the feasibility of this concept depends on the vulnerability of these nano-antennas to the still intense driving laser light.We show, by looking at a set of exemplary metallic structures, that the threshold fluence Fth of laser-induced damage (LID) is a greatly limiting factor for the proposed and tested schemes along these lines.We present our findings in the context of work done by other groups, giving an assessment of the feasibility and effectiveness of the proposed scheme.

Journal ArticleDOI
TL;DR: In this paper, a review of conducting materials like metals, conducting oxides and graphene for nanophotonic applications is presented, emphasizing that metamaterials and plasmonic systems benefit from different conducting materials.
Abstract: We review conducting materials like metals, conducting oxides and graphene for nanophotonic applications. We emphasize that metamaterials and plasmonic systems benefit from different conducting materials. Resonant metamaterials need conductors with small resistivity, since dissipative loss in resonant metamaterials is proportional to the real part of the resistivity of the conducting medium it contains. For plasmonic systems, one must determine the propagation length at a desired level of confinement to estimate the dissipative loss.

Journal ArticleDOI
TL;DR: In this article, the structural flexibility provided by template-guided self-assembly is illustrated by two representative implementations of optoplasmonic materials discussed in this review, as well as the fundamental electromagnetic working principles underlying both optplasmonics approaches.
Abstract: The integration of metallic and dielectric building blocks into optoplasmonic structures creates new electromagnetic systems in which plasmonic and photonic modes can interact in the near-, intermediate- and farfield. The morphology-dependent electromagnetic coupling between the different building blocks in these hybrid structures provides a multitude of opportunities for controlling electromagnetic fields in both spatial and frequency domain as well as for engineering the phase landscape and the local density of optical states. Control over any of these properties requires, however, rational fabrication approaches for well-defined metal-dielectric hybrid structures. Template-guided self-assembly is a versatile fabrication method capable of integrating metallic and dielectric components into discrete optoplasmonic structures, arrays, or metasurfaces. The structural flexibility provided by the approach is illustrated by two representative implementations of optoplasmonic materials discussed in this review. In optoplasmonic atoms or molecules optical microcavities (OMs) serve as whispering gallery mode resonators that provide a discrete photonic mode spectrum to interact with plasmonic nanostructures contained in the evanescent fields of the OMs. In extended hetero-nanoparticle arrays in-plane scattered light induces geometry-dependent photonic resonances that mix with the localized surface plasmon resonances of the metal nanoparticles. As a result, we characterize the fundamental electromagnetic working principles underlying both optoplasmonic approachesmore » and review the fabrication strategies implemented to realize them.« less