scispace - formally typeset
Search or ask a question

Showing papers in "Nature Reviews Rheumatology in 2016"


Journal ArticleDOI
TL;DR: Molecular mechanisms underlying the roles of T NF in homeostasis and inflammatory disease pathogenesis are presented, and novel strategies to advance therapeutic paradigms for the treatment of TNF-mediated diseases are discussed.
Abstract: TNF is a pleiotropic cytokine with important functions in homeostasis and disease pathogenesis. Recent discoveries have provided insights into TNF biology that introduce new concepts for the development of therapeutics for TNF-mediated diseases. The model of TNF receptor signalling has been extended to include linear ubiquitination and the formation of distinct signalling complexes that are linked with different functional outcomes, such as inflammation, apoptosis and necroptosis. Our understanding of TNF-induced gene expression has been enriched by the discovery of epigenetic mechanisms and concepts related to cellular priming, tolerization and induction of 'short-term transcriptional memory'. Identification of distinct homeostatic or pathogenic TNF-induced signalling pathways has introduced the concept of selectively inhibiting the deleterious effects of TNF while preserving its homeostatic bioactivities for therapeutic purposes. In this Review, we present molecular mechanisms underlying the roles of TNF in homeostasis and inflammatory disease pathogenesis, and discuss novel strategies to advance therapeutic paradigms for the treatment of TNF-mediated diseases.

856 citations


Journal ArticleDOI
TL;DR: Osteoarthritis has long been viewed as a degenerative disease of cartilage, but accumulating evidence indicates that inflammation has a critical role in its pathogenesis, and increasing insight into the inflammatory underpinnings of OA holds promise for the development of new, disease-modifying therapies.
Abstract: Osteoarthritis (OA) has long been viewed as a degenerative disease of cartilage, but accumulating evidence indicates that inflammation has a critical role in its pathogenesis. Furthermore, we now appreciate that OA pathogenesis involves not only breakdown of cartilage, but also remodelling of the underlying bone, formation of ectopic bone, hypertrophy of the joint capsule, and inflammation of the synovial lining. That is, OA is a disorder of the joint as a whole, with inflammation driving many pathologic changes. The inflammation in OA is distinct from that in rheumatoid arthritis and other autoimmune diseases: it is chronic, comparatively low-grade, and mediated primarily by the innate immune system. Current treatments for OA only control the symptoms, and none has been FDA-approved for the prevention or slowing of disease progression. However, increasing insight into the inflammatory underpinnings of OA holds promise for the development of new, disease-modifying therapies. Indeed, several anti-inflammatory therapies have shown promise in animal models of OA. Further work is needed to identify effective inhibitors of the low-grade inflammation in OA, and to determine whether therapies that target this inflammation can prevent or slow the development and progression of the disease.

815 citations


Journal ArticleDOI
TL;DR: Improved understanding of the pathogenesis of SLE is driving a renewed interest in targeted therapy, and researchers are now on the verge of developing targeted immunotherapy directed at treating either specific organ system involvement or specific subsets of patients with SLE.
Abstract: In this Review, Tsokos et al. describe recent advances in our understanding of systemic lupus erythematosus (SLE) that are driving repurposing of existing drugs as well as development of new treatments. Cytokines, tolerance pathways, local tissue mediators, and epigenetic mechanisms all show promise as novel targeted therapies that could lead to individualized care in SLE.

766 citations


Journal ArticleDOI
TL;DR: Improved understanding of ageing-related mechanisms that promote OA could lead to the discovery of new targets for therapies that aim to slow or stop the progression of this chronic and disabling condition.
Abstract: Although changes associated with ageing promote the development of osteoarthritis (OA), ageing and OA are independent processes. In this Review, the authors discuss the mechanisms by which age-related factors contribute to OA through effects on articular cartilage and propose that future improvements in our understanding of these mechanisms will inform new therapies to slow or stop the progression of OA. Ageing-associated changes that affect articular tissues promote the development of osteoarthritis (OA). Although ageing and OA are closely linked, they are independent processes. Several potential mechanisms by which ageing contributes to OA have been elucidated. This Review focuses on the contributions of the following factors: age-related inflammation (also referred to as 'inflammaging'); cellular senescence (including the senescence-associated secretory phenotype (SASP)); mitochondrial dysfunction and oxidative stress; dysfunction in energy metabolism due to reduced activity of 5′-AMP-activated protein kinase (AMPK), which is associated with reduced autophagy; and alterations in cell signalling due to age-related changes in the extracellular matrix. These various processes contribute to the development of OA by promoting a proinflammatory, catabolic state accompanied by increased susceptibility to cell death that together lead to increased joint tissue destruction and defective repair of damaged matrix. The majority of studies to date have focused on articular cartilage, and it will be important to determine whether similar mechanisms occur in other joint tissues. Improved understanding of ageing-related mechanisms that promote OA could lead to the discovery of new targets for therapies that aim to slow or stop the progression of this chronic and disabling condition.

650 citations


Journal ArticleDOI
TL;DR: The changes that occur in bone and cartilage during the osteoarthritic process are described, and strategies for how this knowledge could be applied to develop new therapeutic interventions for osteOarthritis are highlighted.
Abstract: In diarthrodial joints, the articular cartilage, calcified cartilage, and subchondral cortical and trabecular bone form a biocomposite - referred to as the osteochondral unit - that is uniquely adapted to the transfer of load. During the evolution of the osteoarthritic process the compositions, functional properties, and structures of these tissues undergo marked alterations. Although pathological processes might selectively target a single joint tissue, ultimately all of the components of the osteochondral unit will be affected because of their intimate association, and thus the biological and physical crosstalk among them is of great importance. The development of targeted therapies against the osteoarthritic processes in cartilage or bone will, therefore, require an understanding of the state of these joint tissues at the time of the intervention. Importantly, these interventions will not be successful unless they are applied at the early stages of disease before considerable structural and functional alterations occur in the osteochondral unit. This Review describes the changes that occur in bone and cartilage during the osteoarthritic process, and highlights strategies for how this knowledge could be applied to develop new therapeutic interventions for osteoarthritis.

526 citations


Journal ArticleDOI
TL;DR: The ability to therapeutically target intracellular signalling pathways has already created a new paradigm for the treatment of rheumatologic disease.
Abstract: Cytokines are major drivers of autoimmunity, and biologic agents targeting cytokines have revolutionized the treatment of immune-mediated diseases. Despite the effectiveness of these drugs, they do not induce complete remission in all patients, prompting the development of alternative strategies - including targeting of intracellular signal transduction pathways downstream of cytokines. Many cytokines that bind type I and type II cytokine receptors are critical regulators of immune-mediated diseases and employ the Janus kinase (JAK) and signal transducer and activator of transcription (STAT) pathway to exert their effect. Pharmacological inhibition of JAKs blocks the actions of type I/II cytokines, and within the past 3 years therapeutic JAK inhibitors, or Jakinibs, have become available to rheumatologists. Jakinibs have proven effective for the treatment of rheumatoid arthritis and other inflammatory diseases. Adverse effects of these agents are largely related to their mode of action and include infections and hyperlipidemia. Jakinibs are currently being investigated for a number of new indications, and second-generation selective Jakinibs are being developed and tested. Targeting STATs could be a future avenue for the treatment of rheumatologic diseases, although substantial challenges remain. Nonetheless, the ability to therapeutically target intracellular signalling pathways has already created a new paradigm for the treatment of rheumatologic disease.

448 citations


Journal ArticleDOI
TL;DR: Preliminary results in mouse models of arthritis have contributed to the understanding of the phenotype and ontogeny of synovial macrophages, and to deciphering the properties of monocyte-derived infiltrating and tissue-resident macrophage properties.
Abstract: Macrophages are very important in the pathogenesis of rheumatoid arthritis (RA). The increase in the number of sublining macrophages in the synovium is an early hallmark of active rheumatic disease, and high numbers of macrophages are a prominent feature of inflammatory lesions. The degree of synovial macrophage infiltration correlates with the degree of joint erosion, and depletion of these macrophages from inflamed tissue has a profound therapeutic benefit. Research has now uncovered an unexpectedly high level of heterogeneity in macrophage origin and function, and has emphasized the role of environmental factors in their functional specialization. Although the heterogeneous populations of macrophages in RA have not been fully characterized, preliminary results in mouse models of arthritis have contributed to our understanding of the phenotype and ontogeny of synovial macrophages, and to deciphering the properties of monocyte-derived infiltrating and tissue-resident macrophages. Elucidating the molecular mechanisms that drive polarization of macrophages towards proinflammatory or anti-inflammatory phenotypes could lead to identification of signalling pathways that inform future therapeutic strategies.

432 citations


Journal ArticleDOI
TL;DR: The combinatorial role played by cytokines in mediating the overlapping innate and adaptive immune responses associated with disease onset and persistence, and also those cytokine pathways that, in turn, drive the stromal response that is critical for tissue localization and associated articular damage are considered.
Abstract: Cytokine-mediated pathways are central to the pathogenesis of rheumatoid arthritis (RA). The purpose of this short Opinion article is to briefly overview the roles of cytokine families in the various phases and tissue compartments of this disease. In particular, we consider the combinatorial role played by cytokines in mediating the overlapping innate and adaptive immune responses associated with disease onset and persistence, and also those cytokine pathways that, in turn, drive the stromal response that is critical for tissue localization and associated articular damage. The success of cytokine inhibition in the clinic is also considerable, not only in offering remarkable therapeutic advances, but also in defining the hierarchical position of distinct cytokines in RA pathogenesis, especially IL-6 and TNF. This hierarchy, in turn, promises to lead to the description of meaningful clinical endotypes and the consequent possibility of therapeutic stratification in future.

380 citations


Journal ArticleDOI
TL;DR: It is the time to begin the era of personalized prevention for knee OA, where prevention and early comprehensive-care models are the accepted norm, as is the case with other chronic diseases.
Abstract: Osteoarthritis (OA) has been thought of as a disease of cartilage that can be effectively treated surgically at severe stages with joint arthroplasty. Today, OA is considered a whole-organ disease that is amenable to prevention and treatment at early stages. OA develops slowly over 10-15 years, interfering with activities of daily living and the ability to work. Many patients tolerate pain, and many health-care providers accept pain and disability as inevitable corollaries of OA and ageing. Too often, health-care providers passively await final 'joint death', necessitating knee and hip replacements. Instead, OA should be viewed as a chronic condition, where prevention and early comprehensive-care models are the accepted norm, as is the case with other chronic diseases. Joint injury, obesity and impaired muscle function are modifiable risk factors amenable to primary and secondary prevention strategies. The strategies that are most appropriate for each patient should be identified, by selecting interventions to correct--or at least attenuate--OA risk factors. We must also choose the interventions that are most likely to be acceptable to patients, to maximize adherence to--and persistence with--the regimes. Now is the time to begin the era of personalized prevention for knee OA.

321 citations


Journal ArticleDOI
TL;DR: The global burden of systemic lupus erythematosus — in terms of incidence and prevalence, differential impact on populations, economic costs and capacity to compromise health-related quality of life — remains incompletely understood.
Abstract: Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease that can potentially lead to serious organ complications and even death. Its global burden - in terms of incidence and prevalence, differential impact on populations, economic costs and capacity to compromise health-related quality of life - remains incompletely understood. The reported worldwide incidence and prevalence of SLE vary considerably; this variation is probably attributable to a variety of factors, including ethnic and geographic differences in the populations being studied, the definition of SLE applied, and the methods of case identification. Despite the heterogeneous nature of the disease, distinct patterns of disease presentation, severity and course can often be related to differences in ethnicity, income level, education, health insurance status, level of social support and medication compliance, as well as environmental and occupational factors. Given the potential for the disease to cause such severe and widespread organ damage, not only are the attendant direct costs high, but these costs are sometimes exceeded by indirect costs owing to loss of economic productivity. As an intangible cost, patients with SLE are, not surprisingly, likely to endure considerably reduced health-related quality of life.

297 citations


Journal ArticleDOI
TL;DR: The pathophysiology of MAS remains elusive, but observations in animal models, as well as data on the effects of new anticytokine therapies on rates and clinical presentations of MAS in patients with systemic juvenile idiopathic arthritis (sJIA), provide clues to the understanding of this perplexing clinical phenomenon.
Abstract: Macrophage activation syndrome (MAS) refers to acute overwhelming inflammation caused by a 'cytokine storm'. Although increasingly recognized as a life-threatening complication of various rheumatic diseases, clinically, MAS is strikingly similar to primary and secondary forms of haemophagocytic lymphohistiocytosis (HLH). Not surprisingly, many rheumatologists prefer the term secondary HLH rather than MAS to describe this condition, and efforts to change the nomenclature are in progress. The pathophysiology of MAS remains elusive, but observations in animal models, as well as data on the effects of new anticytokine therapies on rates and clinical presentations of MAS in patients with systemic juvenile idiopathic arthritis (sJIA), provide clues to the understanding of this perplexing clinical phenomenon. In this Review, we explore the latest available evidence and discuss potential diagnostic challenges in the era of increasing use of biologic therapies.

Journal ArticleDOI
TL;DR: Consideration of the pharmacodynamic perspective could inform the development of biomarkers of responsiveness to methotrexate, enabling therapy to be targeted to specific groups of patients, and could revolutionize the management of RA.
Abstract: The treatment and outcomes of patients with rheumatoid arthritis (RA) have been transformed over the past two decades. Low disease activity and remission are now frequently achieved, and this success is largely the result of the evolution of treatment paradigms and the introduction of new therapeutic agents. Despite the rapid pace of change, the most commonly used drug in RA remains methotrexate, which is considered the anchor drug for this condition. In this Review, we describe the known pharmacokinetic properties and putative mechanisms of action of methotrexate. Consideration of the pharmacodynamic perspective could inform the development of biomarkers of responsiveness to methotrexate, enabling therapy to be targeted to specific groups of patients. Such biomarkers could revolutionize the management of RA.

Journal ArticleDOI
TL;DR: MTOR blockade promises to increase life expectancy through treatment and prevention of rheumatic diseases, and ATP-competitive, dual mTORC1/mTORC2 inhibitors and upstream regulators of the mTOR pathway are being developed to treat autoimmune, hyperproliferative and degenerative diseases.
Abstract: Mechanistic target of rapamycin (mTOR, also known as mammalian target of rapamycin) is a ubiquitous serine/threonine kinase that regulates cell growth, proliferation and survival. These effects are cell-type-specific, and are elicited in response to stimulation by growth factors, hormones and cytokines, as well as to internal and external metabolic cues. Rapamycin was initially developed as an inhibitor of T-cell proliferation and allograft rejection in the organ transplant setting. Subsequently, its molecular target (mTOR) was identified as a component of two interacting complexes, mTORC1 and mTORC2, that regulate T-cell lineage specification and macrophage differentiation. mTORC1 drives the proinflammatory expansion of T helper (TH) type 1, TH17, and CD4(-)CD8(-) (double-negative, DN) T cells. Both mTORC1 and mTORC2 inhibit the development of CD4(+)CD25(+)FoxP3(+) T regulatory (TREG) cells and, indirectly, mTORC2 favours the expansion of T follicular helper (TFH) cells which, similarly to DN T cells, promote B-cell activation and autoantibody production. In contrast to this proinflammatory effect of mTORC2, mTORC1 favours, to some extent, an anti-inflammatory macrophage polarization that is protective against infections and tissue inflammation. Outside the immune system, mTORC1 controls fibroblast proliferation and chondrocyte survival, with implications for tissue fibrosis and osteoarthritis, respectively. Rapamycin (which primarily inhibits mTORC1), ATP-competitive, dual mTORC1/mTORC2 inhibitors and upstream regulators of the mTOR pathway are being developed to treat autoimmune, hyperproliferative and degenerative diseases. In this regard, mTOR blockade promises to increase life expectancy through treatment and prevention of rheumatic diseases.

Journal ArticleDOI
TL;DR: The reprogramming of hypoxia-mediated pathways in synovial cells, such as fibroblasts, dendritic cells, macrophages and T cells, is implicated in the pathogenesis of rheumatoid arthritis and other inflammatory conditions, and might therefore provide an opportunity for therapeutic intervention.
Abstract: Synovial proliferation, neovascularization and leukocyte extravasation transform the normally acellular synovium into an invasive tumour-like 'pannus'. The highly dysregulated architecture of the microvasculature creates a poor oxygen supply to the synovium, which, along with the increased metabolic turnover of the expanding synovial pannus, creates a hypoxic microenvironment. Abnormal cellular metabolism and mitochondrial dysfunction thus ensue and, in turn, through the increased production of reactive oxygen species, actively induce inflammation. When exposed to hypoxia in the inflamed joint, immune-inflammatory cells show adaptive survival reactions by activating key proinflammatory signalling pathways, including those mediated by hypoxia-inducible factor-1α (HIF-1α), nuclear factor κB (NF-κB), Janus kinase-signal transducer and activator of transcription (JAK-STAT) and Notch, which contribute to synovial invasiveness. The reprogramming of hypoxia-mediated pathways in synovial cells, such as fibroblasts, dendritic cells, macrophages and T cells, is implicated in the pathogenesis of rheumatoid arthritis and other inflammatory conditions, and might therefore provide an opportunity for therapeutic intervention.

Journal ArticleDOI
TL;DR: To date, four potent inhibitors of IL-1 are available for clinical use or in late-stage clinical development, which not only constitute efficacious therapies, but also helped improve the understanding of the role ofIL-1 in human disease.
Abstract: Interleukin (IL)-1, first described ∼35 years ago as a secreted product of monocytes and neutrophils, refers to IL-1α and IL-1β, two key cytokines in the activation of innate immunity. These cytokines were among the first proteins identified as orchestrators of leukocyte communication, creating the class of secreted products now known as interleukins. The IL-1 family comprises a total of 11 members, including the two activating cytokines IL-1α and IL-1β as well as an inhibitory mediator, the IL-1 receptor antagonist. IL-1 is processed and activated by a caspase-1 dependent mechanism in conjunction with inflammasome assembly, as well as by caspase-1 independent processes that involve neutrophil proteases. Once activated, IL-1α and IL-1β act as potent proinflammatory cytokines at the local level, triggering vasodilatation and attracting monocytes and neutrophils to sites of tissue damage and stress. Importantly, these cytokines are crucial for the induction of matrix enzymes and serve as potent mediators of tissue damage by altering cartilage and bone homeostasis. Systemically, IL-1 cytokines foster the hypothalamic fever response and promote hyperalgesia. Uncontrolled IL-1 activation is a central component of some inflammatory diseases, including rare hereditary syndromes with mutations in inflammasome-associated genes or more frequent diseases such as gout, characterized by neutrophil infiltration and IL-1 activation. Apart from these connections to inflammatory diseases, an important role for IL-1 in inflammatory atherogenesis is also predicted. To date, four potent inhibitors of IL-1 are available for clinical use or in late-stage clinical development, which not only constitute efficacious therapies, but also helped improve our understanding of the role of IL-1 in human disease.

Journal ArticleDOI
TL;DR: Accumulating evidence suggests that ANCA specificity could be better than clinical diagnosis for defining homogeneous groups of patients, as PR3-ANCA and MPO-AnCA are associated with different genetic backgrounds and epidemiology.
Abstract: The anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAV) are a heterogeneous group of rare syndromes characterized by necrotizing inflammation of small and medium-sized blood vessels and the presence of ANCAs. Several clinicopathological classification systems exist that aim to define homogeneous groups among patients with AAV, the main syndromes being microscopic polyangiitis (MPA), granulomatosis with polyangiitis (GPA) and eosinophilic GPA (EGPA). Two main types of ANCA can be detected in patients with AAV. These ANCAs are defined according to their autoantigen target, namely leukocyte proteinase 3 (PR3) and myeloperoxidase (MPO). Patients with GPA are predominantly PR3-ANCA-positive, whereas those with MPA are predominantly MPO-ANCA-positive, although ANCA specificity overlaps only partially with these clinical syndromes. Accumulating evidence suggests that ANCA specificity could be better than clinical diagnosis for defining homogeneous groups of patients, as PR3-ANCA and MPO-ANCA are associated with different genetic backgrounds and epidemiology. ANCA specificity affects the phenotype of clinical disease, as well as the patient's initial response to remission-inducing therapy, relapse risk and long-term prognosis. Thus, the classification of AAV by ANCA specificity rather than by clinical diagnosis could convey clinically useful information at the time of diagnosis.

Journal ArticleDOI
TL;DR: Approaches based on a molecular–proteomic–lipidomic classification of disease should yield new information about the functional basis of disease heterogeneity so that the most effective and least toxic treatment regimens can be formulated for individual patients.
Abstract: Despite marked improvements in the survival of patients with severe lupus nephritis over the past 50 years, the rate of complete clinical remission after immune suppression therapy is <50% and renal impairment still occurs in 40% of affected patients. An appreciation of the factors that lead to the development of chronic kidney disease following acute or subacute renal injury in patients with systemic lupus erythematosus is beginning to emerge. Processes that contribute to end-stage renal injury include continuing inflammation, activation of intrinsic renal cells, cell stress and hypoxia, metabolic abnormalities, aberrant tissue repair and tissue fibrosis. A deeper understanding of these processes is leading to the development of novel or adjunctive therapies that could protect the kidney from the secondary non-immune consequences of acute injury. Approaches based on a molecular-proteomic-lipidomic classification of disease should yield new information about the functional basis of disease heterogeneity so that the most effective and least toxic treatment regimens can be formulated for individual patients.

Journal ArticleDOI
TL;DR: An expanding view of the biology of GM-CSF is discussed, what has been learnt from studies of animal models and human diseases, and the results of early phase clinical trials evaluating GM- CSF antagonism in inflammatory disorders are summarized.
Abstract: Granulocyte-macrophage colony stimulating factor (GM-CSF) is a growth factor first identified as an inducer of differentiation and proliferation of granulocytes and macrophages derived from haematopoietic progenitor cells. Later studies have shown that GM-CSF is involved in a wide range of biological processes in both innate and adaptive immunity, with its production being tightly linked to the response to danger signals. Given that the functions of GM-CSF span multiple tissues and biological processes, this cytokine has shown potential as a new and important therapeutic target in several autoimmune and inflammatory disorders - particularly in rheumatoid arthritis. Indeed, GM-CSF was one of the first cytokines detected in human synovial fluid from inflamed joints. Therapies that target GM-CSF or its receptor have been tested in preclinical studies with promising results, further supporting the potential of targeting the GM-CSF pathway. In this Review, we discuss our expanding view of the biology of GM-CSF, outline what has been learnt about GM-CSF from studies of animal models and human diseases, and summarize the results of early phase clinical trials evaluating GM-CSF antagonism in inflammatory disorders.

Journal ArticleDOI
TL;DR: Ankylosing spondylitis (AS), an immune-mediated arthritis, is the prototypic member of a group of conditions known as sponyloarthropathies that also includes reactive arthritis, psoriatic arthritis and enteropathic arthritis as discussed by the authors.
Abstract: Ankylosing spondylitis (AS), an immune-mediated arthritis, is the prototypic member of a group of conditions known as spondyloarthropathies that also includes reactive arthritis, psoriatic arthritis and enteropathic arthritis. Patients with these conditions share a clinical predisposition for spinal and pelvic joint dysfunction, as well as genetic associations, notably with HLA-B(*)27. Spondyloarthropathies are characterized by histopathological inflammation in entheses (regions of high mechanical stress where tendons and ligaments insert into bone) and in the subchondral bone marrow, and by abnormal osteoproliferation at involved sites. The association of AS with HLA-B(*)27, first described >40 years ago, led to hope that the cause of the disease would be rapidly established. However, even though many theories have been advanced to explain how HLA-B(*)27 is involved in AS, no consensus about the answers to this question has been reached, and no successful treatments have yet been developed that target HLA-B27 or its functional pathways. Over the past decade, rapid progress has been made in discovering further genetic associations with AS that have shed new light on the aetiopathogenesis of the disease. Some of these discoveries have driven translational ideas, such as the repurposing of therapeutics targeting the cytokines IL-12 and IL-23 and other factors downstream of this pathway. AS provides an excellent example of how hypothesis-free research can lead to major advances in understanding pathogenesis and to the development of innovative therapeutic strategies.

Journal ArticleDOI
TL;DR: Elucidation of the binding specificities and the pathogenic roles of anti-DNA antibodies in SLE should enable improvements in the design of informative assays for both clinical and research purposes.
Abstract: Antibodies that recognize and bind to DNA (anti-DNA antibodies) are serological hallmarks of systemic lupus erythematosus (SLE) and key markers for diagnosis and disease activity. In addition to common use in the clinic, anti-DNA antibody testing now also determines eligibility for clinical trials, raising important questions about the nature of the antibody-antigen interaction. At present, no 'gold standard' for serological assessment exists, and anti-DNA antibody binding can be measured with a variety of assay formats, which differ in the nature of the DNA substrates and in the conditions for binding and detection of antibodies. A mechanism called monogamous bivalency--in which high avidity results from simultaneous interaction of IgG Fab sites with a single polynucleotide chain--determines anti-DNA antibody binding; this mechanism might affect antibody detection in different assay formats. Although anti-DNA antibodies can promote pathogenesis by depositing in the kidney or driving cytokine production, they are not all alike, pathologically, and anti-DNA antibody expression does not necessarily correlate with active disease. Levels of anti-DNA antibodies in patients with SLE can vary over time, distinguishing anti-DNA antibodies from other pathogenic antinuclear antibodies. Elucidation of the binding specificities and the pathogenic roles of anti-DNA antibodies in SLE should enable improvements in the design of informative assays for both clinical and research purposes.

Journal ArticleDOI
TL;DR: Novel insights on the role of TLRs in several inflammatory joint diseases, including rheumatoid arthritis, systemic lupus erythematosus, gout and Lyme arthritis are reviewed, with a focus on the signalling mechanisms mediated by the Toll–IL-1 receptor (TIR) domain.
Abstract: In the past few years, new developments have been reported on the role of Toll-like receptors (TLRs) in chronic inflammation in rheumatic diseases. The inhibitory function of TLR10 has been demonstrated. Receptors that enhance the function of TLRs, and several TLR inhibitors, have been identified. In addition, the role of the microbiome and TLRs in the onset of rheumatic diseases has been reported. We review novel insights on the role of TLRs in several inflammatory joint diseases, including rheumatoid arthritis, systemic lupus erythematosus, gout and Lyme arthritis, with a focus on the signalling mechanisms mediated by the Toll-IL-1 receptor (TIR) domain, the exogenous and endogenous ligands of TLRs, and the current and future therapeutic strategies to target TLR signalling in rheumatic diseases.

Journal ArticleDOI
TL;DR: A 'two- hit' model of OA susceptibility and potentiation suggests that lipopolysaccharide primes the proinflammatory innate immune response via Toll-like receptor 4 and that progression to a full-blown inflammatory response and structural damage of the joint results from coexisting complementary mechanisms.
Abstract: The nature of the gastrointestinal microbiome determines the reservoir of lipopolysaccharide, which can migrate from the gut into the circulation, where it contributes to low-grade inflammation. Osteoarthritis (OA) is a low-grade inflammatory condition, and the elevation of levels of lipopolysaccharide in association with obesity and metabolic syndrome could contribute to OA. A 'two- hit' model of OA susceptibility and potentiation suggests that lipopolysaccharide primes the proinflammatory innate immune response via Toll-like receptor 4 and that progression to a full-blown inflammatory response and structural damage of the joint results from coexisting complementary mechanisms, such as inflammasome activation or assembly by damage-associated molecular patterns in the form of fragmented cartilage-matrix molecules. Lipopolysaccharide could be considered a major hidden risk factor that provides a unifying mechanism to explain the association between obesity, metabolic syndrome and OA.

Journal ArticleDOI
TL;DR: How the social context of individuals with RA affects both their coping strategies and their psychological responses to the disease, and can also impair responses to treatment through disruption of patient-physician relationships and treatment adherence is described.
Abstract: In addition to recurrent pain, fatigue, and increased rates of physical disability, individuals with rheumatoid arthritis (RA) have an increased prevalence of some mental health disorders, particularly those involving affective or mood disturbances. This narrative Review provides an overview of mental health comorbidities in RA, and discusses how these comorbidities interact with disease processes, including dysregulation of inflammatory responses, prolonged difficulties with pain and fatigue, and the development of cognitive and behavioural responses that could exacerbate the physical and psychological difficulties associated with RA. This article describes how the social context of individuals with RA affects both their coping strategies and their psychological responses to the disease, and can also impair responses to treatment through disruption of patient-physician relationships and treatment adherence. Evidence from the literature on chronic pain suggests that the resulting alterations in neural pathways of reward processing could yield new insights into the connections between disease processes in RA and psychological distress. Finally, the role of psychological interventions in the effective and comprehensive treatment of RA is discussed.

Journal ArticleDOI
TL;DR: Evidence exists that the presence of the HLA-B*58:01 allele and a high concentration of oxypurinol function synergistically to increase the number of potentially immunogenic-peptide–oxypur inol–HLA-B*,58:00 complexes on the cell surface, thereby increasing the risk of T-cell sensitization and a subsequent adverse reaction.
Abstract: Allopurinol is the most commonly prescribed urate-lowering therapy for the management of gout. Serious adverse reactions associated with allopurinol, while rare, are feared owing to the high mortality. Such reactions can manifest as a rash combined with eosinophilia, leukocytosis, fever, hepatitis and progressive kidney failure. Risk factors for allopurinol-related severe adverse reactions include the recent introduction of allopurinol, the presence of the HLA-B(*)58:01 allele, and factors that influence the drug concentration. The interactions between allopurinol, its metabolite, oxypurinol, and T cells have been studied, and evidence exists that the presence of the HLA-B(*)58:01 allele and a high concentration of oxypurinol function synergistically to increase the number of potentially immunogenic-peptide-oxypurinol-HLA-B(*)58:01 complexes on the cell surface, thereby increasing the risk of T-cell sensitization and a subsequent adverse reaction. This Review will discuss the above issues and place this in the clinical context of reducing the risk of serious adverse reactions.

Journal ArticleDOI
TL;DR: Novel perspectives for the implementation of EVs as a regenerative medicine approach in joint repair are postulate, based on the existing literature of EVs in synovial fluid and articular tissues and investigation of the molecular factors active in joint homeostasis.
Abstract: Cell-derived extracellular vesicles (EVs), present in synovial fluid and cartilage extracellular matrix (ECM), are involved in joint development and in the regulation of joint homeostasis. Although the exact function of EVs in these processes remains incompletely defined, the knowledge already acquired in this field suggests a role for these EVs as biomarkers of joint disease, and as a new tool to restore joint homeostasis and enhance articular tissue regeneration. In addition to direct injection of therapeutic EVs into the target site, surface coating of scaffolds and embedding of EVs in hydrogels might also lead to novel therapeutic possibilities. Based on the existing literature of EVs in synovial fluid and articular tissues, and investigation of the molecular factors (including microRNAs) active in joint homeostasis (or during its disturbance), we postulate novel perspectives for the implementation of EVs as a regenerative medicine approach in joint repair.

Journal ArticleDOI
TL;DR: The available data on topical and systemic medications, according to clinical signs and disease activity, is summarized, and the ongoing studies using biologic drugs in the treatment of pSS are described.
Abstract: Primary Sjogren syndrome (pSS) is a progressive autoimmune disease characterized by sicca and systemic manifestations. In this Review, we summarize the available data on topical and systemic medications, according to clinical signs and disease activity, and we describe the ongoing studies using biologic drugs in the treatment of pSS. Expanding knowledge about the epidemiology, classification criteria, systemic activity scoring (ESSDAI) and patient-reported outcomes (ESSPRI) is driving active research. Treatment decisions are based on the evaluation of symptoms and extraglandular manifestations. Symptomatic treatment is usually appropriate, whereas systemic treatment is reserved for systemic manifestations. Sicca is managed by education, environment modification, elimination of contingent offending drugs, artificial tears, secretagogues and treatments for complications. Mild systemic signs such as fatigue are treated by exercise. Pain can require short-term moderate-dose glucocorticoid therapy and, in some cases, disease-modifying drugs. Severe and acute systemic manifestations indicate treatment with glucocorticoids and/or immunosuppressant drugs. The role for biologic agents is promising, but no double-blind randomized controlled trials (RCTs) proving the efficacy of these drugs are available. Targets for new treatments directed against the immunopathological mechanisms of pSS include epithelial cells, T cells, B-cell overactivity, the interferon signature, proinflammatory cytokines, ectopic germinal centre formation, chemokines involved in lymphoid cell homing, and epigenetic modifications.

Journal ArticleDOI
TL;DR: By performing global metabolite profiling, also known as untargeted metabolomics, new discoveries linking cellular pathways to biological mechanisms are being revealed and are shaping the understanding of cell biology, physiology and medicine.
Abstract: Metabolomics enables the profiling of large numbers of small molecules in cells, tissues and biological fluids. These molecules, which include amino acids, carbohydrates, lipids, nucleotides and their metabolites, can be detected quantitatively. Metabolomic methods, often focused on the information-rich analytical techniques of NMR spectroscopy and mass spectrometry, have potential for early diagnosis, monitoring therapy and defining disease pathogenesis in many therapeutic areas, including rheumatic diseases. By performing global metabolite profiling, also known as untargeted metabolomics, new discoveries linking cellular pathways to biological mechanisms are being revealed and are shaping our understanding of cell biology, physiology and medicine. These pathways can potentially be targeted to diagnose and treat patients with immune-mediated diseases.

Journal ArticleDOI
TL;DR: A deeper understanding of the involvement of miRNAs in rheumatic diseases is needed before these regulatory pathways can be explored as therapeutic approaches for patients with RA or OA.
Abstract: Epigenetic abnormalities are part of the pathogenetic alterations involved in the development of rheumatic disorders. In this context, the main musculoskeletal cell lineages, which are generated from the pool of mesenchymal stromal cells (MSCs), and the immune cells that participate in rheumatic diseases are deregulated. In this Review, we focus on microRNA (miRNA)-mediated regulatory pathways that control cell proliferation, drive the production of proinflammatory mediators and modulate bone remodelling. The main studies that identify miRNAs as regulators of immune cell fate, MSC differentiation and immunomodulatory properties - parameters that are altered in rheumatoid arthritis (RA) and osteoarthritis (OA) - are also discussed, with emphasis on the importance of miRNAs in the regulation of cellular machinery, extracellular matrix remodelling and cytokine release. A deeper understanding of the involvement of miRNAs in rheumatic diseases is needed before these regulatory pathways can be explored as therapeutic approaches for patients with RA or OA.

Journal ArticleDOI
TL;DR: The links between autophagy, immune responses, fibrosis and cellular fates as they relate to pathologies associated with rheumatic diseases are discussed.
Abstract: Autophagy, an endogenous process necessary for the turnover of organelles, maintains cellular homeostasis and directs cell fate. Alterations to the regulation of autophagy contribute to the progression of various rheumatic diseases, including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), osteoarthritis (OA) and systemic sclerosis (SSc). Implicit in the progression of these diseases are cell-type-specific responses to surrounding factors that alter autophagy: chondrocytes within articular cartilage show decreased autophagy in OA, leading to rapid cell death and cartilage degeneration; fibroblasts from patients with SSc have restricted autophagy, similar to that seen in aged dermal fibroblasts; fibroblast-like synoviocytes from RA joints show altered autophagy, which contributes to synovial hyperplasia; and dysregulation of autophagy in haematopoietic lineage cells alters their function and maturation in SLE. Various upstream mechanisms also contribute to these diseases by regulating autophagy as part of their signalling cascades. In this Review, we discuss the links between autophagy, immune responses, fibrosis and cellular fates as they relate to pathologies associated with rheumatic diseases. Therapies in clinical use, and in preclinical or clinical development, are also discussed in relation to their effects on autophagy in rheumatic diseases.

Journal ArticleDOI
TL;DR: Preclinical studies carried out in animal models of arthritis involving agents targeting chemokines and chemokine receptors with promising results have yielded promising results, however, most human trials of treatment of RA with antibodies and synthetic compounds targetingChemokine signalling have failed to show clinical improvements.
Abstract: Chemokines and chemokine receptors are involved in leukocyte recruitment and angiogenesis underlying the pathogenesis of rheumatoid arthritis (RA) and other inflammatory rheumatic diseases. Numerous chemokines, along with both conventional and atypical cell-surface chemokine receptors, are found in inflamed synovia. Preclinical studies carried out in animal models of arthritis involving agents targeting chemokines and chemokine receptors have yielded promising results. However, most human trials of treatment of RA with antibodies and synthetic compounds targeting chemokine signalling have failed to show clinical improvements. Chemokines can have overlapping actions, and their activities can be altered by chemical modification or proteolytic degradation. Effective targeting of chemokine pathways must take acount of these properties, and can also require high levels of receptor occupancy by therapeutic agents to prevent signalling. CCR1 is a promising target for chemokine-receptor blockade.