scispace - formally typeset
Search or ask a question

Showing papers in "Parasitology in 2014"


Journal ArticleDOI
TL;DR: Advances in next-generation sequencing techniques will significantly improve the understanding of the taxonomy and transmission of Cryptosporidium species, and the investigation of outbreaks and monitoring of emerging and virulent subtypes.
Abstract: Cryptosporidium is increasingly recognized as one of the major causes of moderate to severe diarrhoea in developing countries. With treatment options limited, control relies on knowledge of the biology and transmission of the members of the genus responsible for disease. Currently, 26 species are recognized as valid on the basis of morphological, biological and molecular data. Of the nearly 20 Cryptosporidium species and genotypes that have been reported in humans, Cryptosporidium hominis and Cryptosporidium parvum are responsible for the majority of infections. Livestock, particularly cattle, are one of the most important reservoirs of zoonotic infections. Domesticated and wild animals can each be infected with several Cryptosporidium species or genotypes that have only a narrow host range and therefore have no major public health significance. Recent advances in next-generation sequencing techniques will significantly improve our understanding of the taxonomy and transmission of Cryptosporidium species, and the investigation of outbreaks and monitoring of emerging and virulent subtypes. Important research gaps remain including a lack of subtyping tools for many Cryptosporidium species of public and veterinary health importance, and poor understanding of the genetic determinants of host specificity of Cryptosporidium species and impact of climate change on the transmission of Cryptosporidium.

509 citations


Journal ArticleDOI
TL;DR: The results revealed distinct population structures and geographical patterns of diversity in Toxoplasma gondii, with only Europe and North America exhibiting similar diversity as discussed by the authors, and there is no clear dominance of any genotype even though a few have relatively higher frequencies.
Abstract: In recent years, an extensive collection of Toxoplasma gondii samples have been typed using a set of 10 PCR-RFLP genetic markers. Here we summarize the data reported until the end of 2012. A total of 1457 samples were typed into 189 genotypes. Overall, only a few genotypes dominate in the northern hemisphere, which is in stark contrast to the southern hemisphere where hundreds of genotypes coexist with none being notably dominant. PCR-RFLP genotype #1 (Type II clonal), #2 (Type III), #3 (Type II variant) and #10 (Type I) are identified globally. Genotypes #2 and #3 dominate in Africa, genotypes #9 (Chinese 1) and #10 are prevalent in Asia, genotypes #1, #2 and #3 are prevalent in Europe, genotypes #1, #2, #3, #4 and #5 dominate in North America (#4 and #5 are collectively known as Type 12). In Central and South America, there is no clear dominance of any genotype even though a few have relatively higher frequencies. Statistical analysis indicates significant differences among populations in Africa, Asia, Europe, North America, and Central and South America, with only Europe and North America exhibiting similar diversity. Collectively, the results revealed distinct population structures and geographical patterns of diversity in T. gondii.

322 citations


Journal ArticleDOI
TL;DR: The different UCP-LF based assays for diagnosis of schistosomiasis provide a collection of tests with relatively low complexity and high sensitivity, covering the full range of diagnostics needed in control programmes for mapping, screening and monitoring.
Abstract: The potential of various quantitative lateral flow (LF) based assays utilizing up-converting phosphor (UCP) reporters for the diagnosis of schistosomiasis is reviewed including recent developments. Active infections are demonstrated by screening for the presence of regurgitated worm antigens (genus specific polysaccharides), whereas anti-Schistosoma antibodies may indicate ongoing as well as past infections. The circulating anodic antigen (CAA) in serum or urine (and potentially also saliva) is identified as the marker that may allow detection of single-worm infections. Quantitation of antigen levels is a reliable method to study effects of drug administration, worm burden and anti-fecundity mechanisms. Moreover, the ratio of CAA and circulating cathodic antigen (CCA) is postulated to facilitate identification of either Schistosoma mansoni or Schistosoma haematobium infections. The UCP-LF assays allow simultaneous detection of multiple targets on a single strip, a valuable feature for antibody detection assays. Although antibody detection in endemic regions is not a useful tool to diagnose active infections, it gains potential when the ratio of different classes of antibody specific for the parasite/disease can be determined. The UCP-LF antibody assay format allows this type of multiplexing, including testing a linear array of up to 20 different targets. Multiple test spots would allow detection of specific antibodies, e.g. against different Schistosoma species or other pathogens as soil-transmitted helminths. Concluding, the different UCP-LF based assays for diagnosis of schistosomiasis provide a collection of tests with relatively low complexity and high sensitivity, covering the full range of diagnostics needed in control programmes for mapping, screening and monitoring.

156 citations


Journal ArticleDOI
TL;DR: Main conclusions refer to the pronounced difficulties of diagnosing fascioliasis in humans given the different infection phases and parasite migration capacities, clinical heterogeneity, immunological complexity, different epidemiological situations and transmission patterns, and the advisability for a combined use of different techniques.
Abstract: Before the 1990s, human fascioliasis diagnosis focused on individual patients in hospitals or health centres. Case reports were mainly from developed countries and usually concerned isolated human infection in animal endemic areas. From the mid-1990s onwards, due to the progressive description of human endemic areas and human infection reports in developing countries, but also new knowledge on clinical manifestations and pathology, new situations, hitherto neglected, entered in the global scenario. Human fascioliasis has proved to be pronouncedly more heterogeneous than previously thought, including different transmission patterns and epidemiological situations. Stool and blood techniques, the main tools for diagnosis in humans, have been improved for both patient and survey diagnosis. Present availabilities for human diagnosis are reviewed focusing on advantages and weaknesses, sample management, egg differentiation, qualitative and quantitative diagnosis, antibody and antigen detection, post-treatment monitoring and post-control surveillance. Main conclusions refer to the pronounced difficulties of diagnosing fascioliasis in humans given the different infection phases and parasite migration capacities, clinical heterogeneity, immunological complexity, different epidemiological situations and transmission patterns, the lack of a diagnostic technique covering all needs and situations, and the advisability for a combined use of different techniques, at least including a stool technique and a blood technique.

146 citations


Journal ArticleDOI
TL;DR: The pragmatic approaches used to select compound libraries for screening against kinetoplastids, taking into account screening capacity are reviewed, together with attractive new approaches currently under investigation.
Abstract: The Drugs for Neglected Diseases initiative (DNDi) has defined and implemented an early discovery strategy over the last few years, in fitting with its virtual R&D business model. This strategy relies on a medium- to high-throughput phenotypic assay platform to expedite the screening of compound libraries accessed through its collaborations with partners from the pharmaceutical industry. We review the pragmatic approaches used to select compound libraries for screening against kinetoplastids, taking into account screening capacity. The advantages, limitations and current achievements in identifying new quality series for further development into preclinical candidates are critically discussed, together with attractive new approaches currently under investigation.

136 citations


Journal ArticleDOI
TL;DR: The primary goal of the anti-Wolbachia (A·WOL) consortium is to find drugs and regimens that reduce the period of treatment from weeks to days (7 days or less), and to finding drugs which would be safe in excluded target populations (pregnancy and children).
Abstract: Anti-Wolbachia therapy delivers safe macrofilaricidal activity with superior therapeutic outcomes compared to all standard anti-filarial treatments, with the added benefit of substantial improvements in clinical pathology These outcomes can be achieved, in principle, with existing registered drugs, eg doxycycline, that are affordable, available to endemic communities and have well known, albeit population-limiting, safety profiles The key barriers to using doxycycline as an mass drug administration (MDA) strategy for widespread community-based control are the logistics of a relatively lengthy course of treatment (4–6 weeks) and contraindications in children under eight years and pregnancy Therefore, the primary goal of the anti-Wolbachia (A·WOL) consortium is to find drugs and regimens that reduce the period of treatment from weeks to days (7 days or less), and to find drugs which would be safe in excluded target populations (pregnancy and children) A secondary goal is to refine regimens of existing antibiotics suitable for a more restricted use, prior to the availability of a regimen that is compatible with MDA usage For example, for use in the event of the emergence of drug-resistance, in individuals with high loiasis co-infection and at risk of severe adverse events (SAE) to ivermectin, or in post-MDA ‘endgame scenarios’, where test and treat strategies become more cost effective and deliverable

134 citations


Journal ArticleDOI
TL;DR: Advances in epidemiological and economic research on bovine fasciolosis are expected to deliver farm-specific economic assessments of disease impact, to leverage non-chemotherapeutic management options and to enhance a more targeted use of anthelmintics.
Abstract: Fasciola hepatica is a pathogenic trematode parasite of ruminants with a global distribution. Here, we briefly review the current epidemiology of bovine fasciolosis in Europe and discuss the progress made over the last decade in the diagnosis, impact on production and prediction of F. hepatica in cattle. Advances in diagnosis have led to significantly improved coprological and serological methods to detect presence of infection. Diagnostic test results have been correlated with intensity of infection and associated production losses, unravelling the impact on carcass weight and milk yield in modern cattle production systems. The economic impact of fasciolosis may, however, go beyond the direct impacts on production as evidence shows that F. hepatica can modulate the immune response to some co-infections. Control of bovine fasciolosis remains hampered by the limitations of the currently available flukicidal drugs: few drugs are available to treat dairy cows, many have low efficacies against juvenile stages of F. hepatica and there is evidence for the development of drug resistance. This makes research into the prediction of risk periods, and thus the optimum application of available drugs more pertinent. In this field, the recent research focus has been on understanding spatial risk and delivering region-specific spatial distribution maps. Further advances in epidemiological and economic research on bovine fasciolosis are expected to deliver farm-specific economic assessments of disease impact, to leverage non-chemotherapeutic management options and to enhance a more targeted use of anthelmintics.

133 citations


Journal ArticleDOI
TL;DR: A conceptual overview of meetagenomics is provided, before reviewing several recent promising proof-of-principle applications of metagenomics in virus discovery, analysis of outbreaks and detection of pathogens in contemporary and historical samples.
Abstract: The term 'shotgun metagenomics' is applied to the direct sequencing of DNA extracted from a sample without culture or target-specific amplification or capture. In diagnostic metagenomics, this approach is applied to clinical samples in the hope of detecting and characterizing pathogens. Here, I provide a conceptual overview, before reviewing several recent promising proof-of-principle applications of metagenomics in virus discovery, analysis of outbreaks and detection of pathogens in contemporary and historical samples. I also evaluate future prospects for diagnostic metagenomics in the light of relentless improvements in sequencing technologies.

110 citations


Journal ArticleDOI
TL;DR: A comprehensive overview of currently used live vaccines and of the status quo of experimental vaccine trials is presented and pertinent research fields potentially contributing to the development of novel non-live and/or live vaccines are discussed, including parasite antigens involved in host cell invasion and in pathogen-tick interactions.
Abstract: SUMMARY Bovine babesiosis caused by the tick-transmitted haemoprotozoans Babesia bovis, Babesia bigemina and Babesia divergens commonly results in substantial cattle morbidity and mortality in vast world areas. Although existing live vaccines confer protection, they have considerable disadvantages. Therefore, particularly in countries where large numbers of cattle are at risk, important research is directed towards improved vaccination strategies. Here a comprehensive overview of currently used live vaccines and of the status quo of experimental vaccine trials is presented. In addition, pertinent research fields potentially contributing to the development of novel non-live and/or live vaccines are discussed, including parasite antigens involved in host cell invasion and in pathogen-tick interactions, as well as the protective immunity against infection. The mining of available parasite genomes is continuously enlarging the array of potential vaccine candidates and, additionally, the recent development of a transfection tool for Babesia can significantly contribute to vaccine design. However, the complication and high cost of vaccination trials hinder Babesia vaccine research, and have so far seriously limited the systematic examination of antigen candidates and prevented an in-depth testing of formulations using different immunomodulators and antigen delivery systems.

101 citations


Journal ArticleDOI
TL;DR: The elimination of gambiense human African trypanosomiasis is considered feasible, because of the epidemiological vulnerability of the disease, the current state of control, the availability of strategies and tools and international commitment and political will.
Abstract: Considering the epidemic situation of gambiense human African trypanosomiasis (HAT) at the end of the twentieth century, the World Health Organization (WHO) and partners strengthened disease control and surveillance. Over the last 15 years, the activities implemented through the National Control Programmes have brought gambiense HAT under control and now its elimination is deemed as an achievable goal. In 2012, WHO targeted gambiense HAT for elimination as a public health problem by 2020. The final goal will be the sustainable disease elimination by 2030, defined as the interruption of the transmission of gambiense HAT. The elimination is considered feasible, because of the epidemiological vulnerability of the disease, the current state of control, the availability of strategies and tools and international commitment and political will. Integration of activities in the health system is needed to ensure the sustainability of the elimination. The development of user-friendly diagnostic and treatment tools will facilitate the integration process. Adequate funding is needed to implement activities, but also to support research that will make the elimination sustainable. A long-term commitment by donors is needed and ownership of the process by endemic countries is critical.

95 citations


Journal ArticleDOI
TL;DR: The current mainstay treatments alongside a selection of emerging new clinical molecules from the portfolio of Medicines for Malaria Venture (MMV) and their partners are highlighted.
Abstract: Malaria is a disease that still affects a significant proportion of the global human population. Whilst advances have been made in lowering the numbers of cases and deaths, it is clear that a strategy based solely on disease control year on year, without reducing transmission and ultimately eradicating the parasite, is unsustainable. This article highlights the current mainstay treatments alongside a selection of emerging new clinical molecules from the portfolio of Medicines for Malaria Venture (MMV) and our partners. In each case, the key highlights from each research phase are described to demonstrate how these new potential medicines were discovered. Given the increased focus of the community on eradicating the disease, the strategy for next generation combination medicines that will provide such potential is explained.

Journal ArticleDOI
TL;DR: The influence of the gut microbiota and helminths on host nutrition and immunity and the subsequent effects on the human host's overall health are discussed.
Abstract: Human gastrointestinal bacteria often share their environment with parasitic worms, allowing physical and physiological interaction between the two groups. Such associations have the potential to affect host health as well as the bacterial and helminth populations. Although still in its early stages, research on the interaction between the microbiome and parasitic helminths in humans offers the potential to improve health by manipulating the microbiome. Previously, supplementation with various nutritional compounds has been found to increase the abundance of potentially beneficial gut commensal bacteria. Thus, nutritional microbiome manipulation to produce an environment which may decrease malnutrition associated with helminth infection and/or aid host recovery from disease is conceivable. This review discusses the influence of the gut microbiota and helminths on host nutrition and immunity and the subsequent effects on the human host's overall health. It also discusses changes occurring in the microbiota upon helminth infections and the underlying mechanisms leading to these changes. There are still significant knowledge gaps which need to be filled before meaningful progress can be made in translating knowledge from studying the human gut microbiome into therapeutic strategies. Ultimately this review aims to discuss our current knowledge as well as highlight areas requiring further investigation.

Journal ArticleDOI
TL;DR: A standardized procedure to ‘tag’ mitochondrial cytochrome b DNA sequences is recommended, based on per cent sequence similarity, that will allow researchers to directly assess the novelty, known hosts and geographic distribution of avian malaria parasite lineages.
Abstract: Delimiting species of malaria parasites (Haemosporida) has become increasingly problematic as new lineages of parasites are identified solely by molecular information, particularly mitochondrial cytochrome b sequence data. In this review, we highlight some of the issues, both historical and contemporary, that have hindered the development of objective criteria to diagnose, delimit and define species of haemosporidians. Defining species is not the focal interest of most researchers, most of whom merely wish to determine whether lineages identified in their samples match those of other researchers, and if so, where and in which host species. Rather than revisiting all the issues with respect to delimiting and naming species, we instead focus on finding a practical near-term resolution to the ‘species problem’ that utilizes the community's largest resource: mitochondrial cytochrome b DNA sequences. We recommend a standardized procedure to ‘tag’ these sequences, based on per cent sequence similarity, that will allow researchers to directly assess the novelty, known hosts and geographic distribution of avian malaria parasite lineages.

Journal ArticleDOI
TL;DR: The limited information about virulence factors will be reviewed in context with the pathogenicity of trichomonads which varies greatly, indicating certain strain heterogeneity of the parasites.
Abstract: Members of the family Trichomonadidae, mainly Trichomonas gallinae and Tetratrichomonas gallinarum, represent important parasites in birds with worldwide presence, since being reported in the 19th century. Especially Columbiformes, Falconiformes and Strigiformes can be severely affected by trichomonads, whereas the majority of infections in Galliformes and Anatiformes are subclinical although severe infections are occasionally reported. With the recent appearance of deadly infections in wild Passeriformes the protozoan parasite T. gallinae obtained greater attention which will be addressed in this review. Although light microscopy remains the method of choice to confirm the presence of trichomonads molecular studies were introduced in recent years, in order to characterize the parasites and to establish relationships between isolates. Isolation of trichomonads is a prerequisite for detailed in vitro and in vivo studies and different media are reported to obtain suitable material. The limited information about virulence factors will be reviewed in context with the pathogenicity of trichomonads which varies greatly, indicating certain strain heterogeneity of the parasites. Options for treatment characterized by the leading role of imidazoles whose activity is sometimes hampered by resistant parasites remains a challenge for the future. Introducing more standardized genetic studies and investigations concentrating on the host-pathogen interaction should be helpful to elucidate virulence factors which might lead to new concepts of treatment.

Journal ArticleDOI
TL;DR: Special attention will be given to NET-associated mechanisms by which parasites, in particular apicomplexa, might be hampered in their ability to reproduce within the host cell and complete the life cycle.
Abstract: The capacity of polymorphonuclear neutrophils (PMN) and other leucocytes of the innate immune system to expel their DNA in a controlled process into the extracellular environment to trap and kill pathogenic microorganisms led to a paradigm shift in our comprehension of host leucocyte-pathogen interactions. Formation of neutrophil extracellular traps (NETs) has recently been recognized as a novel effector mechanism of the host innate immune response against microbial infections. Meanwhile evidence has arisen that NET formation is a widely spread mechanism in vertebrates and invertebrates and extends not only to the entrapment of microbes, fungi and viruses but also to the capture of protozoan and metazoan parasites. PMN produce NETs after stimulation with mitogens, cytokines or pathogens in a controlled process which depends on reactive oxygen species (ROS) and the induction of the Raf-MEK-ERK-mediated signalling pathway cascade. NETs consist of nuclear DNA as a backbone decorated with histones, antimicrobial peptides, and PMN-specific granular enzymes thereby providing an extracellular matrix capable of entrapping and killing invasive pathogens. This review is intended to summarize parasite-related data on NETs. Special attention will be given to NET-associated mechanisms by which parasites, in particular apicomplexa, might be hampered in their ability to reproduce within the host cell and complete the life cycle.

Journal ArticleDOI
TL;DR: There is still no effective pharmaceutical compound available for the treatment of besnoitiosis in cattle, and progress in the identification of novel targets for intervention through pharmacological or immunological means is hampered by the lack of molecular data on the genomic and transcriptomic level.
Abstract: Bovine besnoitiosis is caused by the largely unexplored apicomplexan parasite Besnoitia besnoiti. In cows, infection during pregnancy often results in abortion, and chronically infected bulls become infertile. Similar to other apicomplexans B. besnoiti has acquired a largely intracellular lifestyle, but its complete life cycle is still unknown, modes of transmission have not been entirely resolved and the definitive host has not been identified. Outbreaks of bovine besnoitiosis in cattle were described in the 1990s in Portugal and Spain, and later several cases were also detected in France. More cases have been reported recently in hitherto unaffected countries, including Italy, Germany, Switzerland, Hungary and Croatia. To date, there is still no effective pharmaceutical compound available for the treatment of besnoitiosis in cattle, and progress in the identification of novel targets for intervention through pharmacological or immunological means is hampered by the lack of molecular data on the genomic and transcriptomic level. In addition, the lack of an appropriate small animal laboratory model, and wide gaps in our knowledge on the host-parasite interplay during the life cycle of this parasite, renders vaccine and drug development a cost- and labour-intensive undertaking.

Journal ArticleDOI
TL;DR: The diversity of parasites that one can expect in most settings is far less than the parasitological textbooks would have you believe, hence developing a simplified diagnostic triage is feasible.
Abstract: For many years PCR- and other DNA-based methods of pathogen detection have been available in most clinical microbiology laboratories; however, until recently these tools were not routinely exploited for the diagnosis of parasitic infections. Laboratories were initially reluctant to implement PCR as incorporation of such assays within the algorithm of tools available for the most accurate diagnosis of a large variety of parasites was unclear. With regard to diagnosis of intestinal parasitic infections, the diversity of parasites that one can expect in most settings is far less than the parasitological textbooks would have you believe, hence developing a simplified diagnostic triage is feasible. Therefore the classical algorithm based on population, patient groups, use of immuno-suppressive drugs, travel history etc. is also applicable to decide when to perform and which additional techniques are to be used, if a multiplex PCR panel is used as a first-line screening diagnostic.

Journal ArticleDOI
TL;DR: Investigating the role of chemokines in severe malaria and the implication of these responses for the induction of pathogenesis and immunity to infection and the main findings are summarized.
Abstract: Plasmodium falciparum malaria is responsible for over 250 million clinical cases every year worldwide. Severe malaria cases might present with a range of disease syndromes including acute respiratory distress, metabolic acidosis, hypoglycaemia, renal failure, anaemia, pulmonary oedema, cerebral malaria (CM) and placental malaria (PM) in pregnant women. Two main determinants of severe malaria have been identified: sequestration of parasitized red blood cells and strong pro-inflammatory responses. Increasing evidence from human studies and malaria infection animal models revealed the presence of host leucocytes at the site of parasite sequestration in brain blood vessels as well as placental tissue in complicated malaria cases. These observations suggested that apart from secreting cytokines, leucocytes might also contribute to disease by migrating to the site of parasite sequestration thereby exacerbating organ-specific inflammation. This evidence attracted substantial interest in identifying trafficking pathways by which inflammatory leucocytes are recruited to target organs during severe malaria syndromes. Chemo-attractant cytokines or chemokines are the key regulators of leucocyte trafficking and their potential contribution to disease has recently received considerable attention. This review summarizes the main findings to date, investigating the role of chemokines in severe malaria and the implication of these responses for the induction of pathogenesis and immunity to infection.

Journal ArticleDOI
TL;DR: The evidence for N-myristoyltransferase (NMT), an enzyme that N-terminally lipidates a wide range of specific target proteins through post-translational modification, as a potential drug target in malaria and the leishmaniases, is presented.
Abstract: Infections caused by protozoan parasites are among the most widespread and intractable transmissible diseases affecting the developing world, with malaria and leishmaniasis being the most costly in terms of morbidity and mortality. Although new drugs are urgently required against both diseases in the face of ever-rising resistance to frontline therapies, very few candidates passing through development pipelines possess a known and novel mode of action. Set in the context of drugs currently in use and under development, we present the evidence for N-myristoyltransferase (NMT), an enzyme that N-terminally lipidates a wide range of specific target proteins through post-translational modification, as a potential drug target in malaria and the leishmaniases. We discuss the limitations of current knowledge regarding the downstream targets of this enzyme in protozoa, and our recent progress towards potent cell-active NMT inhibitors against the most clinically-relevant species of parasite. Finally, we outline the next steps required in terms of both tools to understand N-myristoylation in protozoan parasites, and the generation of potential development candidates based on the output of our recently-reported high-throughput screens.

Journal ArticleDOI
TL;DR: Current options for diagnosis of schistosomiasis at different levels are reviewed, highlighting several strengths and weaknesses therein and it is proposed that more cost-effective diagnostics and clinical staging algorithms are needed.
Abstract: Within the World Health Organization 2012-2020 roadmap for control and elimination of schistosomiasis, the scale-up of mass drug administration with praziquantel is set to change the epidemiological landscape across Africa and Arabia. Central in measuring progress is renewed emphasis upon diagnostics which operate at individual, community and environmental levels by assessing reductions in disease, infections and parasite transmission. However, a fundamental tension is revealed between levels for present diagnostic tools, and methods applied in control settings are not necessarily adequate for application in elimination scenarios. Indeed navigating the transition from control to elimination needs careful consideration and planning. In the present context of control, we review current options for diagnosis of schistosomiasis at different levels, highlighting several strengths and weaknesses therein. Future challenges in elimination are raised and we propose that more cost-effective diagnostics and clinical staging algorithms are needed. Using the Kingdom of Saudi Arabia as a contemporary example, embedding new diagnostic methods within the primary care health system is discussed with reference to both urogenital and intestinal schistosomiasis.

Journal ArticleDOI
TL;DR: Swab sampling of lesions was painless, simple to perform and coupled with standardized DNA extraction enhances the feasibility of molecular diagnosis of CL, and was the most efficient recovery method for Leishmania DNA.
Abstract: Variation in clinical accuracy of molecular diagnostic methods for cutaneous leishmaniasis (CL) is commonly observed depending on the sample source, the method of DNA recovery and the molecular test. Few attempts have been made to compare these variables. Two swab and aspirate samples from lesions of patients with suspected CL (n = 105) were evaluated alongside standard diagnosis by microscopic detection of amastigotes or culture of parasites from lesion material. Three DNA extraction methods were compared: Qiagen on swab and aspirate specimens, Isohelix on swabs and Boil/Spin of lesion aspirates. Recovery of Leishmania DNA was evaluated for each sample type by real-time polymerase chain reaction detection of parasitic 18S rDNA, and the diagnostic accuracy of the molecular method determined. Swab sampling combined with Qiagen DNA extraction was the most efficient recovery method for Leishmania DNA, and was the most sensitive (98%; 95% CI: 91-100%) and specific (84%; 95% CI: 64-95%) approach. Aspirated material was less sensitive at 80% (95% CI: 70-88%) and 61% (95% CI: 50-72%) when coupled to Qiagen or Boil-Spin DNA extraction, respectively. Swab sampling of lesions was painless, simple to perform and coupled with standardized DNA extraction enhances the feasibility of molecular diagnosis of CL.

Journal ArticleDOI
TL;DR: Six Sarcocystis species believed to be conspecific with species occurring in either reindeer or moose are described from Norwegian red deer in order to corroborate or refute previous species designations.
Abstract: In a previous investigation, five Sarcocystis species were described from Norwegian red deer and believed to be conspecific with species occurring in either reindeer or moose based on sarcocyst morphology and nucleotide sequences of the nuclear ribosomal DNA unit. The aim of the present study was to characterize numerous isolates of these sarcocyst types at the mitochondrial cytochrome c oxidase subunit I gene (cox1) in order to corroborate or refute previous species designations of Sarcocystis in red deer. The Sarcocystis tarandi- and Sarcocystis rangiferi-like taxa in red deer and reindeer, respectively, were thoroughly compared by sequencing 14–27 isolates of each type. Sequence comparisons revealed four distinct sequence types, which by phylogenetic analyses were placed in four monophyletic groups according to host origin, and they were therefore considered to represent four separate species. The two taxa of this type in red deer were named Sarcocystis elongata and Sarcocystis truncata, respectively. Sequencing of many isolates of Sarcocystis hjorti and Sarcocystis ovalis from red deer and moose confirmed that these species occur in both hosts. A revised description of the two new species is given and the current knowledge concerning all six Sarcocystis species in red deer is reviewed.

Journal ArticleDOI
TL;DR: Recent advances in research on host cell infection regarding the excystation process, attachment and invasion, survival in the cell, egress and the available data on omics are summarized.
Abstract: Cryptosporidium host cell interaction remains fairly obscure compared with other apicomplexans such as Plasmodium or Toxoplasma. The reason for this is probably the inability of this parasite to complete its life cycle in vitro and the lack of a system to genetically modify Cryptosporidium. However, there is a substantial set of data about the molecules involved in attachment and invasion and about the host cell pathways involved in actin arrangement that are altered by the parasite. Here we summarize the recent advances in research on host cell infection regarding the excystation process, attachment and invasion, survival in the cell, egress and the available data on omics.

Journal ArticleDOI
TL;DR: Here, chronic multi-species malaria infections persisted in children after AL treatment(s), and better point-of-care diagnostics for non-falciparum infections are needed, as well as further investigation of AL performance in asymptomatic individuals.
Abstract: During a longitudinal study investigating the dynamics of malaria in Ugandan lakeshore communities, a consistently high malaria prevalence was observed in young children despite regular treatment. To explore the short-term performance of artemether-lumefantrine (AL), a pilot investigation into parasite carriage after treatment(s) was conducted in Bukoba village. A total of 163 children (aged 2-7 years) with a positive blood film and rapid antigen test were treated with AL; only 8.7% of these had elevated axillary temperatures. On day 7 and then on day 17, 40 children (26.3%) and 33 (22.3%) were positive by microscopy, respectively. Real-time PCR analysis demonstrated that multi-species Plasmodium infections were common at baseline, with 41.1% of children positive for Plasmodium falciparum/Plasmodium malariae, 9.2% for P. falciparum/ Plasmodium ovale spp. and 8.0% for all three species. Moreover, on day 17, 39.9% of children infected with falciparum malaria at baseline were again positive for the same species, and 9.2% of those infected with P. malariae at baseline were positive for P. malariae. Here, chronic multi-species malaria infections persisted in children after AL treatment(s). Better point-of-care diagnostics for non-falciparum infections are needed, as well as further investigation of AL performance in asymptomatic individuals.

Journal ArticleDOI
TL;DR: This review focuses on immune responses to Leishmania in both cutaneous and visceral forms of the disease, pointing to the complexity of the immune response and to a range of evasive mechanisms utilized by the parasite to bypass those responses.
Abstract: SUMMARY Leishmania are protozoan parasites spread by a sandfly insect vector and causing a spectrum of diseases collectively known as leishmaniasis. The disease is a significant health problem in many parts of the world, resulting in an estimated 1·3 million new cases and 30 000 deaths annually. Current treatment is based on chemotherapy, which is difficult to administer, expensive and becoming ineffective in several endemic regions. To date there is no vaccine against leishmaniasis, although extensive evidence from studies in animal models indicates that solid protection can be achieved upon immunization. This review focuses on immune responses to Leishmania in both cutaneous and visceral forms of the disease, pointing to the complexity of the immune response and to a range of evasive mechanisms utilized by the parasite to bypass those responses. The amalgam of innate and acquired immunity combined with the paucity of data on the human immune response is one of the major problems currently hampering vaccine development and implementation.

Journal ArticleDOI
TL;DR: The persistence of high genetic diversity and high proportion of MCI, with little change in effective population size, despite the collapse in demographic population size of P. vivax in Sri Lanka indicates the importance of maintaining stringent control and surveillance measures to prevent resurgence.
Abstract: Here we examined whether the recent dramatic decline in malaria transmission in Sri Lanka led to a major bottleneck in the local Plasmodium vivax population, with a substantial decrease in the effective population size. To this end, we typed 14 highly polymorphic microsatellite markers in 185 P. vivax patient isolates collected from 13 districts in Sri Lanka over a period of 5 years (2003-2007). Overall, we found a high degree of polymorphism, with 184 unique haplotypes (12-46 alleles per locus) and average genetic diversity (expected heterozygosity) of 0·8744. Almost 69% (n = 127) isolates had multiple-clone infections (MCI). Significant spatial and temporal differentiation (F ST = 0·04-0·25; P⩽0·0009) between populations was observed. The effective population size was relatively high but showed a decline from 2003-4 to 2006-7 periods (estimated as 45 661 to 22 896 or 10 513 to 7057, depending on the underlying model used). We used three approaches - namely, mode-shift in allele frequency distribution, detection of heterozygote excess and the M-ratio statistics - to test for evidence of a recent population bottleneck but only the low values of M-ratio statistics (ranging between 0·15-0·33, mean 0·26) were suggestive of such a bottleneck. The persistence of high genetic diversity and high proportion of MCI, with little change in effective population size, despite the collapse in demographic population size of P. vivax in Sri Lanka indicates the importance of maintaining stringent control and surveillance measures to prevent resurgence.

Journal ArticleDOI
TL;DR: Assessment of lungworm species of domestic felids and their concurrent development in the mollusc Helix aspersa suggests that A. abstrusus and T. brevior develop in H. aspersas and may eventually co-infest cats.
Abstract: Aelurostrongylus abstrusus (Strongylida, Angiostrongylidae) and Troglostrongylus brevior (Strongylida, Crenosomatidae) are regarded as important lungworm species of domestic felids, with the latter considered an emerging threat in the Mediterranean region. The present study aimed to assess their concurrent development in the mollusc Helix aspersa (Pulmonata, Helicidae). Thirty snails were infested with 100 first-stage larvae (L1) of A. abstrusus and T. brevior, isolated from a naturally infested kitten. Larval development was checked by digesting five specimens at 2, 6 and 11 days post infestation. Larvae retrieved were morphologically described and their identification was confirmed by specific PCR and sequencing. All H. aspersa snails were positive for A. abstrusus and T. brevior, whose larval stages were simultaneously detected at each time point. In addition, snails were exposed to outdoor conditions and examined after overwintering, testing positive up to 120 days post infestation. Data herein presented suggest that A. abstrusus and T. brevior develop in H. aspersa snails and may eventually co-infest cats. Data on the morphology of both parasitic species in H. aspersa provide additional information on their development and identification, to better understand the population dynamics of these lungworms in receptive snails and paratenic hosts.

Journal ArticleDOI
TL;DR: The present review canvasses the relevant literature for evidence for control options for N. caninum (some of them proven, many not) and assesses them in the light of the authors’ knowledge and experience with control of N.Caninum.
Abstract: Recent work has highlighted and enumerated the economic annual losses due to Neospora caninum abortions worldwide, which should provide strong motivation for the control of bovine neosporosis. However, with the recent withdrawal from sale of the only commercially available vaccine, control options for N. caninum have become more restricted. While researchers continue to work on developing alternative efficacious vaccines, what are the control options presently available for the cattle industries? At the practical level, recommendations for 'Test-and-cull', or 'not breeding from seropositive dams' stand diametrically opposed to alternative options put forward that suggest a primary producer is better advised to keep those cows in the herd that are already seropositive, i.e., assumed to be chronically infected, and indeed those that have already aborted once. Treatment with a coccidiostat has been recommended as the only economically viable option, yet no such treatment has gained official, regulatory approval. Dogs are central to the life cycle of N. caninum and have repeatedly been associated with infection and abortions in cattle by epidemiological studies. Knowledge and understanding of that pivotal role should be able to be put to use in control programmes. The present review canvasses the relevant literature for evidence for control options for N. caninum (some of them proven, many not) and assesses them in the light of the authors' knowledge and experience with control of N. caninum.

Journal ArticleDOI
TL;DR: Data on host-dependent factors obtained from naturally infected cattle showed that the seroprevalence of infection is similar in both sexes, and whether colostral antibodies are protective and to what extent the humoral immune response might reflect the disease/protection status require further research.
Abstract: Bovine besnoitiosis is caused by the cyst-forming apicomplexan parasite Besnoitia besnoiti. This disease progresses in two sequential phases: a febrile acute phase with oedemas and respiratory disorders, and a chronic phase characterized by the presence of subcutaneous tissue cysts and skin lesions. Serious consequences of the infection are poor body condition, sterility in bulls and eventual death. The role of host/parasite-dependent factors, which play a major role in the pathogenesis of the disease, is not yet fully elucidated. Isolate/strain virulence, parasite stage, dose and the route of parasite inoculation were studied under different experimental conditions, which make it difficult to compare the results. Data on host-dependent factors obtained from naturally infected cattle showed that (i) the seroprevalence of infection is similar in both sexes; (ii) seropositivity increases with age; (iii) both beef and dairy cattle are susceptible to the infection; and (iv) the cell-mediated immune response is likely to play a major role because a T cell response has been observed around several tissue cysts. Whether colostral antibodies are protective and to what extent the humoral immune response might reflect the disease/protection status require further research. Thus, a well-established experimental bovine model could help to clarify these important questions. The dynamics of B. besnoiti infection in cattle and available knowledge on relevant factors in the pathogenesis of the infection are reviewed in the present work.

Journal ArticleDOI
TL;DR: Coccidiosis, a serious disease resulting from infection with parasitic protozoa of the genus Eimeria, causes significant economic losses to the poultry industry, where intensive rearing facilitates transmission of infectious oocysts via the fecal/oral route.
Abstract: Coccidiosis, a serious disease resulting from infection with parasitic protozoa of the genus Eimeria, causes significant economic losses to the poultry industry, where intensive rearing facilitates transmission of infectious oocysts via the fecal/oral route. Current control relies primarily on prophylactic drugs in feed but, whilst cost effective, the rise of drug resistance and public demands for residue-free meat has encouraged development of alternative control strategies. Chickens that recover from infection with Eimeria develop solid immunity that is directed against the early asexual stages of the parasite life cycle. This has allowed development of a number of vaccines that utilize deliberate infection with controlled doses of virulent oocysts or reproductively attenuated lines of Eimeria. The latter are immunogenic but non-pathogenic. The realization that both prophylactic drugs and attenuated vaccines control but do not eradicate infection with Eimeria encouraged development of a vaccine based upon maternal immunity. Laying hens exposed to Eimeria are able to transfer protective antibodies to hatchlings via egg yolks and these antibodies have been used to identify parasite proteins that are conserved across the genus. When delivered maternally, these provide an economical means of preventing coccidiosis, offering immediate protection to newly hatched chicks.