scispace - formally typeset
Search or ask a question

Showing papers in "Solid Earth in 2017"


Journal ArticleDOI
TL;DR: The In situ Stimulation and Circulation (ISC) experiment at the Grimsel Test Site in Switzerland as discussed by the authors was designed to address open research questions in a naturally fractured and faulted crystalline rock mass, and two hydraulic injection phases were executed to enhance the permeability of the rock mass.
Abstract: . In this contribution, we present a review of scientific research results that address seismo-hydromechanically coupled processes relevant for the development of a sustainable heat exchanger in low-permeability crystalline rock and introduce the design of the In situ Stimulation and Circulation (ISC) experiment at the Grimsel Test Site dedicated to studying such processes under controlled conditions. The review shows that research on reservoir stimulation for deep geothermal energy exploitation has been largely based on laboratory observations, large-scale projects and numerical models. Observations of full-scale reservoir stimulations have yielded important results. However, the limited access to the reservoir and limitations in the control on the experimental conditions during deep reservoir stimulations is insufficient to resolve the details of the hydromechanical processes that would enhance process understanding in a way that aids future stimulation design. Small-scale laboratory experiments provide fundamental insights into various processes relevant for enhanced geothermal energy, but suffer from (1) difficulties and uncertainties in upscaling the results to the field scale and (2) relatively homogeneous material and stress conditions that lead to an oversimplistic fracture flow and/or hydraulic fracture propagation behavior that is not representative of a heterogeneous reservoir. Thus, there is a need for intermediate-scale hydraulic stimulation experiments with high experimental control that bridge the various scales and for which access to the target rock mass with a comprehensive monitoring system is possible. The ISC experiment is designed to address open research questions in a naturally fractured and faulted crystalline rock mass at the Grimsel Test Site (Switzerland). Two hydraulic injection phases were executed to enhance the permeability of the rock mass. During the injection phases the rock mass deformation across fractures and within intact rock, the pore pressure distribution and propagation, and the microseismic response were monitored at a high spatial and temporal resolution.

145 citations


Journal ArticleDOI
TL;DR: In this article, a least-cost path solver and specially tailored cost functions are used to rapidly interpolate structural features between manually defined control points in point cloud and raster datasets, which can be applied to a variety of 3D and 2D datasets, including high-resolution aerial imagery, digital outcrop models, digital elevation models and geophysical grids.
Abstract: . The advent of large digital datasets from unmanned aerial vehicle (UAV) and satellite platforms now challenges our ability to extract information across multiple scales in a timely manner, often meaning that the full value of the data is not realised. Here we adapt a least-cost-path solver and specially tailored cost functions to rapidly interpolate structural features between manually defined control points in point cloud and raster datasets. We implement the method in the geographic information system QGIS and the point cloud and mesh processing software CloudCompare. Using these implementations, the method can be applied to a variety of three-dimensional (3-D) and two-dimensional (2-D) datasets, including high-resolution aerial imagery, digital outcrop models, digital elevation models (DEMs) and geophysical grids. We demonstrate the algorithm with four diverse applications in which we extract (1) joint and contact patterns in high-resolution orthophotographs, (2) fracture patterns in a dense 3-D point cloud, (3) earthquake surface ruptures of the Greendale Fault associated with the Mw7.1 Darfield earthquake (New Zealand) from high-resolution light detection and ranging (lidar) data, and (4) oceanic fracture zones from bathymetric data of the North Atlantic. The approach improves the consistency of the interpretation process while retaining expert guidance and achieves significant improvements (35–65 %) in digitisation time compared to traditional methods. Furthermore, it opens up new possibilities for data synthesis and can quantify the agreement between datasets and an interpretation.

129 citations


Journal ArticleDOI
TL;DR: In this article, the authors used the universal soil loss equation (RUSLE) model to evaluate soil conservation practices in a data-scarce watershed region and found that 35% of the existing structures can reduce soil loss significantly.
Abstract: . Soil erosion is one of the major factors affecting sustainability of agricultural production in Ethiopia. The objective of this paper is to estimate soil erosion using the universal soil loss equation (RUSLE) model and to evaluate soil conservation practices in a data-scarce watershed region. For this purpose, soil data, rainfall, erosion control practices, satellite images and topographic maps were collected to determine the RUSLE factors. In addition, measurements of randomly selected soil and water conservation structures were done at three sub-watersheds (Asanat, Debreyakob and Rim). This study was conducted in Koga watershed at upper part of the Blue Nile basin which is affected by high soil erosion rates. The area is characterized by undulating topography caused by intensive agricultural practices with poor soil conservation practices. The soil loss rates were determined and conservation strategies have been evaluated under different slope classes and land uses. The results showed that the watershed is affected by high soil erosion rates (on average 42 t ha−1 yr−1), greater than the maximum tolerable soil loss (18 t ha−1 yr−1). The highest soil loss (456 t ha−1 yr−1) estimated from the upper watershed occurred on cultivated lands of steep slopes. As a result, soil erosion is mainly aggravated by land-use conflicts and topographic factors and the rugged topographic land forms of the area. The study also demonstrated that the contribution of existing soil conservation structures to erosion control is very small due to incorrect design and poor management. About 35 % out of the existing structures can reduce soil loss significantly since they were constructed correctly. Most of the existing structures were demolished due to the sediment overload, vulnerability to livestock damage and intense rainfall. Therefore, appropriate and standardized soil and water conservation measures for different erosion-prone land uses and land forms need to be implemented in Koga watershed.

94 citations


Journal ArticleDOI
TL;DR: In this article, the spatiotemporal evolution of soil erosion and its relationship with rocky desertification using GIS technology and the revised universal soil loss equation (RUSLE) were analyzed.
Abstract: . Although some scholars have studied soil erosion in karst landforms, analyses of the spatial and temporal evolution of soil erosion and correlation analyses with spatial elements have been insufficient. The lack of research has led to an inaccurate assessment of environmental effects, especially in the mountainous area of Wuling in China. Soil erosion and rocky desertification in this area influence the survival and sustainability of a population of 0.22 billion people. This paper analyzes the spatiotemporal evolution of soil erosion and explores its relationship with rocky desertification using GIS technology and the revised universal soil loss equation (RUSLE). Furthermore, this paper analyzes the relationship between soil erosion and major natural elements in southern China. The results are as follows: (1) from 2000 to 2013, the proportion of the area experiencing micro-erosion and mild erosion was at increasing risk in contrast to areas where moderate and high erosion are decreasing. The area changes in this time sequence reflect moderate to high levels of erosion tending to convert into micro-erosion and mild erosion. (2) The soil erosion area on the slope, at 15–35°, accounted for 60.59 % of the total erosion area, and the corresponding soil erosion accounted for 40.44 %. (3) The annual erosion rate in the karst region decreased much faster than in the non-karst region. Soil erosion in all of the rock outcrop areas indicates an improving trend, and dynamic changes in soil erosion significantly differ among the various lithological distribution belts. (4) The soil erosion rate decreased in the rocky desertification regions, to below moderate levels, but increased in the severe rocky desertification areas. The temporal and spatial variations in soil erosion gradually decreased in the study area. Differences in the spatial distribution between lithology and rocky desertification induced extensive soil loss. As rocky desertification became worse, the erosion modulus decreased and the decreasing rate of annual erosion slowed.

73 citations


Journal ArticleDOI
TL;DR: In this paper, the authors developed a numerical simulation of groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks.
Abstract: . Theory and numerical implementation describing groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks are developed. In our formulation, fractures are considered as being of lower dimension than the hosting deformable porous rock and we consider their hydraulic and mechanical apertures as scaling parameters to ensure continuous exchange of fluid mass and energy within the fracture–solid matrix system. The coupled system of equations is implemented in a new simulator code that makes use of a Galerkin finite-element technique. The code builds on a flexible, object-oriented numerical framework (MOOSE, Multiphysics Object Oriented Simulation Environment) which provides an extensive scalable parallel and implicit coupling to solve for the multiphysics problem. The governing equations of groundwater flow, heat and mass transport, and rock deformation are solved in a weak sense (either by classical Newton–Raphson or by free Jacobian inexact Newton–Krylow schemes) on an underlying unstructured mesh. Nonlinear feedbacks among the active processes are enforced by considering evolving fluid and rock properties depending on the thermo-hydro-mechanical state of the system and the local structure, i.e. degree of connectivity, of the fracture system. A suite of applications is presented to illustrate the flexibility and capability of the new simulator to address problems of increasing complexity and occurring at different spatial (from centimetres to tens of kilometres) and temporal scales (from minutes to hundreds of years).

63 citations


Journal ArticleDOI
TL;DR: ObspyDMT simplifies and speeds up user interaction with data centers, in more versatile ways than existing tools, and facilitates data archiving, preprocessing, instrument correction and quality control – routine but nontrivial tasks that can consume much user time.
Abstract: . We present obspyDMT, a free, open-source software toolbox for the query, retrieval, processing and management of seismological data sets, including very large, heterogeneous and/or dynamically growing ones. ObspyDMT simplifies and speeds up user interaction with data centers, in more versatile ways than existing tools. The user is shielded from the complexities of interacting with different data centers and data exchange protocols and is provided with powerful diagnostic and plotting tools to check the retrieved data and metadata. While primarily a productivity tool for research seismologists and observatories, easy-to-use syntax and plotting functionality also make obspyDMT an effective teaching aid. Written in the Python programming language, it can be used as a stand-alone command-line tool (requiring no knowledge of Python) or can be integrated as a module with other Python codes. It facilitates data archiving, preprocessing, instrument correction and quality control – routine but nontrivial tasks that can consume much user time. We describe obspyDMT's functionality, design and technical implementation, accompanied by an overview of its use cases. As an example of a typical problem encountered in seismogram preprocessing, we show how to check for inconsistencies in response files of two example stations. We also demonstrate the fully automated request, remote computation and retrieval of synthetic seismograms from the Synthetics Engine (Syngine) web service of the Data Management Center (DMC) at the Incorporated Research Institutions for Seismology (IRIS).

52 citations


Journal ArticleDOI
TL;DR: In this article, a series of hydrofracturing and overcoring tests were performed to characterize the stress field at the Grimsel Test Site (GTS) underground rock laboratory, and the fracture growth direction from microseismicity is consistent with the principal stress orientations from the overcoring stress tests, provided that an anisotropic elastic model for the rock mass is used in the data inversions.
Abstract: . To characterize the stress field at the Grimsel Test Site (GTS) underground rock laboratory, a series of hydrofracturing and overcoring tests were performed. Hydrofracturing was accompanied by seismic monitoring using a network of highly sensitive piezosensors and accelerometers that were able to record small seismic events associated with metre-sized fractures. Due to potential discrepancies between the hydrofracture orientation and stress field estimates from overcoring, it was essential to obtain high-precision hypocentre locations that reliably illuminate fracture growth. Absolute locations were improved using a transverse isotropic P-wave velocity model and by applying joint hypocentre determination that allowed for the computation of station corrections. We further exploited the high degree of waveform similarity of events by applying cluster analysis and relative relocation. Resulting clouds of absolute and relative located seismicity showed a consistent east–west strike and 70° dip for all hydrofractures. The fracture growth direction from microseismicity is consistent with the principal stress orientations from the overcoring stress tests, provided that an anisotropic elastic model for the rock mass is used in the data inversions. The σ1 stress is significantly larger than the other two principal stresses and has a reasonably well-defined orientation that is subparallel to the fracture plane; σ2 and σ3 are almost equal in magnitude and thus lie on a circle defined by the standard errors of the solutions. The poles of the microseismicity planes also lie on this circle towards the north. Analysis of P-wave polarizations suggested double-couple focal mechanisms with both thrust and normal faulting mechanisms present, whereas strike-slip and thrust mechanisms would be expected from the overcoring-derived stress solution. The reasons for these discrepancies can be explained by pressure leak-off, but possibly may also involve stress field rotation around the propagating hydrofracture. Our study demonstrates that microseismicity monitoring along with high-resolution event locations provides valuable information for interpreting stress characterization measurements.

47 citations


Journal ArticleDOI
TL;DR: In this article, a texture transition from peripheral [c]axes in regime 1 to a central [c]-axis maximum in regime 3 is observed, which is not due to deformation by basal 〈a〉 slip.
Abstract: . The crystallographic preferred orientations (textures) of three samples of Black Hills Quartzite (BHQ) deformed experimentally in the dislocation creep regimes 1, 2 and 3 (according to Hirth and Tullis, 1992) have been analyzed using electron backscatter diffraction (EBSD). All samples were deformed to relatively high strain at temperatures of 850 to 915 °C and are almost completely dynamically recrystallized. A texture transition from peripheral [c] axes in regime 1 to a central [c] maximum in regime 3 is observed. Separate pole figures are calculated for different grain sizes, aspect ratios and long-axis trends of grains, and high and low levels of intragranular deformation intensity as measured by the mean grain kernel average misorientation (gKAM). Misorientation relations are analyzed for grains of different texture components (named Y, B, R and σ grains, with reference to previously published prism , basal , rhomb and σ1 grains). Results show that regimes 1 and 3 correspond to clear end-member textures, with regime 2 being transitional. Texture strength and the development of a central [c]-axis maximum from a girdle distribution depend on deformation intensity at the grain scale and on the contribution of dislocation creep, which increases towards regime 3. Adding to this calculations of resolved shear stresses and misorientation analysis, it becomes clear that the peripheral [c]-axis maximum in regime 1 is not due to deformation by basal 〈a〉 slip. Instead, we interpret the texture transition as a result of different texture forming processes, one being more efficient at high stresses (nucleation or growth of grains with peripheral [c] axes), the other depending on strain (dislocation glide involving prism and rhomb 〈a〉 slip systems), and not as a result of temperature-dependent activity of different slip systems.

47 citations


Journal ArticleDOI
TL;DR: In this paper, the authors use the integral equation approach with short arcs (Mayer-Gurr, 2006) to compute more than 500 time-variable gravity fields with different parameterizations from kinematic orbits.
Abstract: . Measuring the spatiotemporal variation of ocean mass allows for partitioning of volumetric sea level change, sampled by radar altimeters, into mass-driven and steric parts. The latter is related to ocean heat change and the current Earth's energy imbalance. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) mission has provided monthly snapshots of the Earth's time-variable gravity field, from which one can derive ocean mass variability. However, GRACE has reached the end of its lifetime with data degradation and several gaps occurred during the last years, and there will be a prolonged gap until the launch of the follow-on mission GRACE-FO. Therefore, efforts focus on generating a long and consistent ocean mass time series by analyzing kinematic orbits from other low-flying satellites, i.e. extending the GRACE time series. Here we utilize data from the European Space Agency's (ESA) Swarm Earth Explorer satellites to derive and investigate ocean mass variations. For this aim, we use the integral equation approach with short arcs (Mayer-Gurr, 2006) to compute more than 500 time-variable gravity fields with different parameterizations from kinematic orbits. We investigate the potential to bridge the gap between the GRACE and the GRACE-FO mission and to substitute missing monthly solutions with Swarm results of significantly lower resolution. Our monthly Swarm solutions have a root mean square error (RMSE) of 4.0 mm with respect to GRACE, whereas directly estimating constant, trend, annual, and semiannual (CTAS) signal terms leads to an RMSE of only 1.7 mm. Concerning monthly gaps, our CTAS Swarm solution appears better than interpolating existing GRACE data in 13.5 % of all cases, when artificially removing one solution. In the case of an 18-month artificial gap, 80.0 % of all CTAS Swarm solutions were found closer to the observed GRACE data compared to interpolated GRACE data. Furthermore, we show that precise modeling of non-gravitational forces acting on the Swarm satellites is the key for reaching these accuracies. Our results have implications for sea level budget studies, but they may also guide further research in gravity field analysis schemes, including satellites not dedicated to gravity field studies.

44 citations


Journal ArticleDOI
TL;DR: In this paper, a combination of scanning electron microscopy (SEM) and broad ion beam (BIB) polishing was used to study the evolution of microstructure in samples of triaxially deformed Callovo-Oxfordian clay.
Abstract: . The macroscopic description of deformation and fluid flow in mudrocks can be improved by a better understanding of microphysical deformation mechanisms. Here we use a combination of scanning electron microscopy (SEM) and broad ion beam (BIB) polishing to study the evolution of microstructure in samples of triaxially deformed Callovo–Oxfordian Clay. Digital image correlation (DIC) was used to measure strain field in the samples and as a guide to select regions of interest in the sample for BIB–SEM analysis. Microstructures show evidence for dominantly cataclastic and minor crystal plastic mechanisms (intergranular, transgranular, intragranular cracking, grain rotation, clay particle bending) down to the nanometre scale. At low strain, the dilatant fabric contains individually recognisable open fractures, while at high strain the reworked clay gouge also contains broken non-clay grains and smaller pores than the undeformed material, resealing the initial fracture porosity.

40 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigated the record in suitable rock samples that preserve textures and robust mineral assemblages that withstood overprinting during exhumation in the Sesia Zone.
Abstract: . Contiguous continental high-pressure terranes in orogens offer insight into deep recycling and transformation processes that occur in subduction zones. These remain poorly understood, and currently debated ideas need testing. The approach we chose is to investigate, in detail, the record in suitable rock samples that preserve textures and robust mineral assemblages that withstood overprinting during exhumation. We document complex garnet zoning in eclogitic mica schists from the Sesia Zone (western Italian Alps). These retain evidence of two orogenic cycles and provide detailed insight into resorption, growth, and diffusion processes induced by fluid pulses in high-pressure conditions. We analysed local textures and garnet compositional patterns, which turned out remarkably complex. By combining these with thermodynamic modelling, we could unravel and quantify repeated fluid–rock interaction processes. Garnet shows low-Ca porphyroclastic cores that were stable under (Permian) granulite facies conditions. The series of rims that surround these cores provide insight into the subsequent evolution: the first garnet rim that surrounds the pre-Alpine granulite facies core in one sample indicates that pre-Alpine amphibolite facies metamorphism followed the granulite facies event. In all samples documented, cores show lobate edges and preserve inner fractures, which are sealed by high-Ca garnet that reflects high-pressure Alpine conditions. These observations suggest that during early stages of subduction, before hydration of the granulites, brittle failure of garnet occurred, indicating high strain rates that may be due to seismic failure. Several Alpine rims show conspicuous textures indicative of interaction with hydrous fluid: (a) resorption-dominated textures produced lobate edges, at the expense of the outer part of the granulite core; (b) peninsulas and atoll garnet are the result of replacement reactions; and (c) spatially limited resorption and enhanced transport of elements due to the fluid phase are evident along brittle fractures and in their immediate proximity. Thermodynamic modelling shows that all of these Alpine rims formed under eclogite facies conditions. Structurally controlled samples allow these fluid–garnet interaction phenomena to be traced across a portion of the Sesia Zone, with a general decrease in fluid–garnet interaction observed towards the external, structurally lower parts of the terrane. Replacement of the Permian HT assemblages by hydrate-rich Alpine assemblages can reach nearly 100 % of the rock volume. Since we found no clear relationship between discrete deformation structures (e.g. shear zones) observed in the field and the fluid pulses that triggered the transformation to eclogite facies assemblages, we conclude that disperse fluid flow was responsible for the hydration.

Journal ArticleDOI
TL;DR: The study shows that different types of geological data have disparate effects on model uncertainty and model geometry, and the presented approach using both information entropy and distance measures can be a major help in the optimization of 3-D geological models.
Abstract: . The quality of a 3-D geological model strongly depends on the type of integrated geological data, their interpretation and associated uncertainties. In order to improve an existing geological model and effectively plan further site investigation, it is of paramount importance to identify existing uncertainties within the model space. Information entropy, a voxel-based measure, provides a method for assessing structural uncertainties, comparing multiple model interpretations and tracking changes across consecutively built models. The aim of this study is to evaluate the effect of data integration (i.e., update of an existing model through successive addition of different types of geological data) on model uncertainty, model geometry and overall structural understanding. Several geological 3-D models of increasing complexity, incorporating different input data categories, were built for the study site Staufen (Germany). We applied the concept of information entropy in order to visualize and quantify changes in uncertainty between these models. Furthermore, we propose two measures, the Jaccard and the city-block distance, to directly compare dissimilarities between the models. The study shows that different types of geological data have disparate effects on model uncertainty and model geometry. The presented approach using both information entropy and distance measures can be a major help in the optimization of 3-D geological models.

Journal ArticleDOI
TL;DR: In this paper, the saturation exponent of any phase can be interpreted as the rate of change of the fractional connectedness with saturation and connectivity within the reference subset of phases in a larger n-phase medium.
Abstract: . This paper describes the extension of the concepts of connectedness and conservation of connectedness that underlie the generalized Archie's law for n phases to the interpretation of the saturation exponent. It is shown that the saturation exponent as defined originally by Archie arises naturally from the generalized Archie's law. In the generalized Archie's law the saturation exponent of any given phase can be thought of as formally the same as the phase (i.e. cementation) exponent, but with respect to a reference subset of phases in a larger n-phase medium. Furthermore, the connectedness of each of the phases occupying a reference subset of an n-phase medium can be related to the connectedness of the subset itself by Gi = GrefSini. This leads naturally to the idea of the term Sini for each phase i being a fractional connectedness, where the fractional connectednesses of any given reference subset sum to unity in the same way that the connectednesses sum to unity for the whole medium. One of the implications of this theory is that the saturation exponent of any phase can be now be interpreted as the rate of change of the fractional connectedness with saturation and connectivity within the reference subset.

Journal ArticleDOI
TL;DR: In this article, the authors used 2D and 3D seismic reflection data to investigate the structural development of the Farsund Basin, offshore southern Norway, using throw-length (T-x) analysis and fault displacement backstripping techniques to determine the geometric and kinematic evolution of N-S- and E-W-striking upper-crustal fault populations during the multiphase evolution.
Abstract: . Pre-existing structures within sub-crustal lithosphere may localise stresses during subsequent tectonic events, resulting in complex fault systems at upper-crustal levels. As these sub-crustal structures are difficult to resolve at great depths, the evolution of kinematically and perhaps geometrically linked upper-crustal fault populations can offer insights into their deformation history, including when and how they reactivate and accommodate stresses during later tectonic events. In this study, we use borehole-constrained 2-D and 3-D seismic reflection data to investigate the structural development of the Farsund Basin, offshore southern Norway. We use throw–length (T-x) analysis and fault displacement backstripping techniques to determine the geometric and kinematic evolution of N–S- and E–W-striking upper-crustal fault populations during the multiphase evolution of the Farsund Basin. N–S-striking faults were active during the Triassic, prior to a period of sinistral strike-slip activity along E–W-striking faults during the Early Jurassic, which represented a hitherto undocumented phase of activity in this area. These E–W-striking upper-crustal faults are later obliquely reactivated under a dextral stress regime during the Early Cretaceous, with new faults also propagating away from pre-existing ones, representing a switch to a predominantly dextral sense of motion. The E–W faults within the Farsund Basin are interpreted to extend through the crust to the Moho and link with the Sorgenfrei–Tornquist Zone, a lithosphere-scale lineament, identified within the sub-crustal lithosphere, that extends > 1000 km across central Europe. Based on this geometric linkage, we infer that the E–W-striking faults represent the upper-crustal component of the Sorgenfrei–Tornquist Zone and that the Sorgenfrei–Tornquist Zone represents a long-lived lithosphere-scale lineament that is periodically reactivated throughout its protracted geological history. The upper-crustal component of the lineament is reactivated in a range of tectonic styles, including both sinistral and dextral strike-slip motions, with the geometry and kinematics of these faults often inconsistent with what may otherwise be inferred from regional tectonics alone. Understanding these different styles of reactivation not only allows us to better understand the influence of sub-crustal lithospheric structure on rifting but also offers insights into the prevailing stress field during regional tectonic events.

Journal ArticleDOI
TL;DR: In this article, the authors evaluate the spatial and temporal evolution of Earth's long-wavelength surface dynamic topography since the Jurassic using a series of high-resolution global mantle convection models.
Abstract: . We evaluate the spatial and temporal evolution of Earth's long-wavelength surface dynamic topography since the Jurassic using a series of high-resolution global mantle convection models. These models are Earth-like in terms of convective vigour, thermal structure, surface heat-flux and the geographic distribution of heterogeneity. The models generate a degree-2-dominated spectrum of dynamic topography with negative amplitudes above subducted slabs (i.e. circum-Pacific regions and southern Eurasia) and positive amplitudes elsewhere (i.e. Africa, north-western Eurasia and the central Pacific). Model predictions are compared with published observations and subsidence patterns from well data, both globally and for the Australian and southern African regions. We find that our models reproduce the long-wavelength component of these observations, although observed smaller-scale variations are not reproduced. We subsequently define geodynamic rules for how different surface tectonic settings are affected by mantle processes: (i) locations in the vicinity of a subduction zone show large negative dynamic topography amplitudes; (ii) regions far away from convergent margins feature long-term positive dynamic topography; and (iii) rapid variations in dynamic support occur along the margins of overriding plates (e.g. the western US) and at points located on a plate that rapidly approaches a subduction zone (e.g. India and the Arabia Peninsula). Our models provide a predictive quantitative framework linking mantle convection with plate tectonics and sedimentary basin evolution, thus improving our understanding of how subduction and mantle convection affect the spatio-temporal evolution of basin architecture.

Journal ArticleDOI
TL;DR: The severity of land degradation was estimated quantitatively by analyzing the physico-chemical parameters in the laboratory to determine saline or salt-free soils and calcareous or sodic soils and further correlating them with satellite-based studies.
Abstract: . Land degradation leads to alteration of ecological and economic functions due to a decrease in productivity and quality of the land. The aim of the present study was to assess land degradation with the help of geospatial technology – remote sensing (RS) and geographical information system (GIS) – in Bathinda district, Punjab. The severity of land degradation was estimated quantitatively by analyzing the physico-chemical parameters in the laboratory to determine saline or salt-free soils and calcareous or sodic soils and further correlating them with satellite-based studies. The pH varied between 7.37 and 8.59, electrical conductivity (EC) between 1.97 and 8.78 dS m−1 and the methyl orange or total alkalinity between 0.070 and 0.223 (HCO3−) g L−1 as CaCO3. The spatial variability in these soil parameters was depicted through soil maps generated in a GIS environment. The results revealed that the soil in the study area was exposed to salt intrusion, which could be mainly attributed to irrigation practices in the state of Punjab. Most of the soil samples of the study area were slightly or moderately saline with a few salt-free sites. Furthermore, the majority of the soil samples were calcareous and a few samples were alkaline or sodic in nature. A comparative analysis of temporal satellite datasets of Landsat 7 ETM+ and Landsat 8 OLI_TIRS of 2000 and 2014, respectively, revealed that the water body showed a slight decreasing trend from 2.46 km2 in 2000 to 1.87 km2 in 2014, while the human settlements and other built-up areas expanded from 586.25 to 891.09 km2 in a span of 14 years. The results also showed a decrease in area under barren land from 68.9847 km2 in 2000 to 15.26 km2 in 2014. A significant correlation was observed between the digital number (DN) of the near-infrared band and pH and EC. Therefore, it is suggested that the present study can be applied to projects with special relevance to soil scientists, environmental scientists and planning agencies that can use the present study as baseline data to combat land degradation and conserve land resources in an efficient manner.

Journal ArticleDOI
TL;DR: In this paper, the authors present a workflow for structural 3D modeling of the primary faults based on a comparison of three extrapolation approaches based on (a) field data, (b) Delaunay triangulation, and (c) best-fitting moment of inertia analysis.
Abstract: . Exhumed basement rocks are often dissected by faults, the latter controlling physical parameters such as rock strength, porosity, or permeability. Knowledge on the three-dimensional (3-D) geometry of the fault pattern and its continuation with depth is therefore of paramount importance for applied geology projects (e.g. tunnelling, nuclear waste disposal) in crystalline bedrock. The central Aar massif (Central Switzerland) serves as a study area where we investigate the 3-D geometry of the Alpine fault pattern by means of both surface (fieldwork and remote sensing) and underground ground (mapping of the Grimsel Test Site) information. The fault zone pattern consists of planar steep major faults (kilometre scale) interconnected with secondary relay faults (hectometre scale). Starting with surface data, we present a workflow for structural 3-D modelling of the primary faults based on a comparison of three extrapolation approaches based on (a) field data, (b) Delaunay triangulation, and (c) a best-fitting moment of inertia analysis. The quality of these surface-data-based 3-D models is then tested with respect to the fit of the predictions with the underground appearance of faults. All three extrapolation approaches result in a close fit ( > 10 %) when compared with underground rock laboratory mapping. Subsequently, we performed a statistical interpolation based on Bayesian inference in order to validate and further constrain the uncertainty of the extrapolation approaches. This comparison indicates that fieldwork at the surface is key for accurately constraining the geometry of the fault pattern and enabling a proper extrapolation of major faults towards depth. Considerable uncertainties, however, persist with respect to smaller-sized secondary structures because of their limited spatial extensions and unknown reoccurrence intervals.

Journal ArticleDOI
TL;DR: The 2014 Piton de la Fournaise (PdF) eruption was the smallest so far observed at PdF in terms of duration and volume (less than 2 days) as mentioned in this paper.
Abstract: . The 2014 eruption at Piton de la Fournaise (PdF), La Reunion, which occurred after 41 months of quiescence, began with surprisingly little precursory activity and was one of the smallest so far observed at PdF in terms of duration (less than 2 days) and volume (less than 0.4 × 106 m3). The pyroclastic material was composed of golden basaltic pumice along with fluidal, spiny iridescent and spiny opaque basaltic scoria. Density analyses performed on 200 lapilli reveal that while the spiny opaque clasts are the densest (1600 kg m−3) and most crystalline (55 vol. %), the golden pumices are the least dense (400 kg m−3) and crystalline (8 vol. %). The connectivity data indicate that the fluidal and golden (Hawaiian-like) clasts have more isolated vesicles (up to 40 vol. %) than the spiny (Strombolian-like) clasts (0–5 vol. %). These textural variations are linked to primary pre-eruptive magma storage conditions. The golden and fluidal fragments track the hotter portion of the melt, in contrast to the spiny fragments and lava that mirror the cooler portion of the shallow reservoir. Exponential decay of the magma ascent and output rates through time revealed depressurization of the source during which a stratified storage system was progressively tapped. Increasing syn-eruptive degassing and melt–gas decoupling led to a decrease in the explosive intensity from early fountaining to Strombolian activity. The geochemical results confirm the absence of new input of hot magma into the 2014 reservoir and confirm the emission of a single shallow, differentiated magma source, possibly related to residual magma from the November 2009 eruption. Fast volatile exsolution and crystal–melt separation (second boiling) were triggered by deep pre-eruptive magma transfer and stress field change. Our study highlights the possibility that shallow magma pockets can be quickly reactivated by deep processes without mass or energy (heat) transfer and produce hazardous eruptions with only short-term elusive precursors.

Journal ArticleDOI
TL;DR: In this article, the degree of structural disorder of graphite, manifested as changes in the Raman spectra, was analyzed by Raman microspectroscopy and it was concluded that the calibrated graphite thermometer is ambiguous in active tectonic settings.
Abstract: . Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry , we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25 megapascal (MPa) and aseismic velocities of 1, 10 and 100 µm s−1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

Journal ArticleDOI
TL;DR: Li et al. as discussed by the authors investigated how the abundances of soil bacteria changed across land-use types, how the structure of the soil bacterial community was altered in each landuse type, and how these variations were correlated with soil physical and chemical properties.
Abstract: . The conversion of natural grassland into agricultural fields is an intensive anthropogenic perturbation commonly occurring in semiarid regions, and this perturbation strongly affects soil microbiota. In this study, the influences of land-use conversion on the soil properties and bacterial communities in the Horqin Grasslands in Northeast China were assessed. This study aimed to investigate (1) how the abundances of soil bacteria changed across land-use types, (2) how the structure of the soil bacterial community was altered in each land-use type, and (3) how these variations were correlated with soil physical and chemical properties. Variations in the diversities and compositions of bacterial communities and the relative abundances of dominant taxa were detected in four distinct land-use systems, namely, natural meadow grassland, paddy field, upland field, and poplar plantation, through the high-throughput Illumina MiSeq sequencing technique. The results indicated that land-use changes primarily affected the soil physical and chemical properties and bacterial community structure. Soil properties, namely, organic matter, pH, total N, total P, available N and P, and microbial biomass C, N, and P, influenced the bacterial community structure. The dominant phyla and genera were almost the same among the land-use types, but their relative abundances were significantly different. The effects of land-use changes on the structure of soil bacterial communities were more quantitative than qualitative.

Journal ArticleDOI
TL;DR: The Fregon Subdomain in Central Australia was deformed under dry sub-eclogitic conditions of 600-700°C and 1.0-1.2 GPa during the intracontinental Petermann Orogeny (ca. 550 Ma) as discussed by the authors.
Abstract: . Geophysical evidence for lower continental crustal earthquakes in almost all collisional orogens is in conflict with the widely accepted notion that rocks, under high grade conditions, should flow rather than fracture. Pseudotachylytes are remnants of frictional melts generated during seismic slip and can therefore be used as an indicator of former seismogenic fault zones. The Fregon Subdomain in Central Australia was deformed under dry sub-eclogitic conditions of 600–700 °C and 1.0–1.2 GPa during the intracontinental Petermann Orogeny (ca. 550 Ma) and contains abundant pseudotachylyte. These pseudotachylytes are commonly foliated, recrystallized, and cross-cut by other pseudotachylytes, reflecting repeated generation during ongoing ductile deformation. This interplay is interpreted as evidence for repeated seismic brittle failure and post- to inter-seismic creep under dry lower-crustal conditions. Thermodynamic modelling of the pseudotachylyte bulk composition gives the same PT conditions of shearing as in surrounding mylonites. We conclude that pseudotachylytes in the Fregon Subdomain are a direct analogue of current seismicity in dry lower continental crust.

Journal ArticleDOI
TL;DR: In this paper, a combined structural interpretation of multichannel reflection seismic profiles from offshore of northern Mozambique (East Africa) and the conjugate Riiser-Larsen Sea (Antarctica) is presented.
Abstract: . Movements within early East Gondwana dispersal are poorly constrained, and there is debate about conjugate geologic structures and the timing and directions of the rifting and earliest seafloor spreading phases. We present a combined structural interpretation of multichannel reflection seismic profiles from offshore of northern Mozambique (East Africa) and the conjugate Riiser-Larsen Sea (Antarctica). We find similar structural styles at the margins of both basins. At certain positions at the foot of the continental slope close to the continent–ocean transition, the basement is intensely deformed and fractured, a structural style very untypical for rifted continental margins. Sediments overlying the fractured basement are deformed and reveal toplap and onlap geometries, indicating a post-breakup deformation phase. We propose this unique deformation zone as a tie point for Gondwana reconstructions. Accordingly, we interpret the western flank of Gunnerus Ridge, Antarctica as a transform margin similar to the Davie Ridge offshore of Madagascar, implying that they are conjugate features. As the continental slope deformation is post-rift, we propose a two-phase opening scenario. A first phase of rifting and early seafloor spreading, likely in NW–SE direction, was subsequently replaced by a N–S-directed transform deformation phase overprinting the continent–ocean transition. From previously identified magnetic chrons and the sediment stratigraphy, this change in the spreading directions from NW–SE to N–S is suggested to have occurred by the late Middle Jurassic. We suggest that the second phase of deformation corresponds to the strike-slip movement of Madagascar and Antarctica and discuss implications for Gondwana breakup.

Journal ArticleDOI
TL;DR: In this paper, three major fault complexes, the Masoy Fault Complex, the Rolvsoya Fault, and the Troms-Finnmark Fault Complex were mapped and analyzed.
Abstract: . The SW Barents Sea margin experienced a pulse of extensional deformation in the Middle–Late Devonian through the Carboniferous, after the Caledonian Orogeny terminated. These events marked the initial stages of formation of major offshore basins such as the Hammerfest and Nordkapp basins. We mapped and analyzed three major fault complexes, (i) the Masoy Fault Complex, (ii) the Rolvsoya fault, and (iii) the Troms–Finnmark Fault Complex. We discuss the formation of the Masoy Fault Complex as a possible extensional splay of an overall NE–SW-trending, NW-dipping, basement-seated Caledonian shear zone, the Soroya–Ingoya shear zone, which was partly inverted during the collapse of the Caledonides and accommodated top–NW normal displacement in Middle to Late Devonian–Carboniferous times. The Troms–Finnmark Fault Complex displays a zigzag-shaped pattern of NNE–SSW- and ENE–WSW-trending extensional faults before it terminates to the north as a WNW–ESE-trending, NE-dipping normal fault that separates the southwesternmost Nordkapp basin in the northeast from the western Finnmark Platform and the Gjesvaer Low in the southwest. The WNW–ESE-trending, margin-oblique segment of the Troms–Finnmark Fault Complex is considered to represent the offshore prolongation of a major Neoproterozoic fault complex, the Trollfjorden–Komagelva Fault Zone, which is made of WNW–ESE-trending, subvertical faults that crop out on the island of Mageroya in NW Finnmark. Our results suggest that the Trollfjorden–Komagelva Fault Zone dies out to the northwest before reaching the western Finnmark Platform. We propose an alternative model for the origin of the WNW–ESE-trending segment of the Troms–Finnmark Fault Complex as a possible hard-linked, accommodation cross fault that developed along the Soroy–Ingoya shear zone. This brittle fault decoupled the western Finnmark Platform from the southwesternmost Nordkapp basin and merged with the Masoy Fault Complex in Carboniferous times. Seismic data over the Gjesvaer Low and southwesternmost Nordkapp basin show that the low-gravity anomaly observed in these areas may result from the presence of Middle to Upper Devonian sedimentary units resembling those in Middle Devonian, spoon-shaped, late- to post-orogenic collapse basins in western and mid-Norway. We propose a model for the formation of the southwesternmost Nordkapp basin and its counterpart Devonian basin in the Gjesvaer Low by exhumation of narrow, ENE–WSW- to NE–SW-trending basement ridges along a bowed portion of the Soroya-Ingoya shear zone in the Middle to Late Devonian–early Carboniferous. Exhumation may have involved part of a large-scale metamorphic core complex that potentially included the Lofoten Ridge, the West Troms Basement Complex and the Norsel High. Finally, we argue that the Soroya–Ingoya shear zone truncated and decapitated the Trollfjorden–Komagelva Fault Zone during the Caledonian Orogeny and that the western continuation of the Trollfjorden–Komagelva Fault Zone was mostly eroded and potentially partly preserved in basement highs in the SW Barents Sea.

Journal ArticleDOI
TL;DR: In this paper, the authors used a petrographic and micro-structural analysis linked with thermodynamic modelling and U-Th-Pb age dating to reconstruct the P-T-t trajectories of these tectonic subunits.
Abstract: . Subducted continental terranes commonly comprise an assembly of subunits that reflect the different tectono-metamorphic histories they experienced in the subduction zone. Our challenge is to unravel how, when, and in which part of the subduction zone these subunits were juxtaposed. Petrochronology offers powerful tools to decipher pressure–temperature–time (P–T–t) histories of metamorphic rocks that preserve a record of several stages of transformation. A major issue is that the driving forces for re-equilibration at high pressure are not well understood. For example, continental granulite terrains subducted to mantle depths frequently show only partial and localized eclogitization. The Sesia Zone (NW Italy) is exceptional because it comprises several continental subunits in which eclogitic rocks predominate and high-pressure (HP) assemblages almost completely replaced the Permian granulite protoliths. This field-based study comprises both main complexes of the Sesia terrane, covering some of the recently recognized tectonic subunits involved in its assembly; hence our data constrain the HP tectonics that formed the Sesia Zone. We used a petrochronological approach consisting of petrographic and microstructural analysis linked with thermodynamic modelling and U–Th–Pb age dating to reconstruct the P–T–t trajectories of these tectonic subunits. Our study documents when and under what conditions re-equilibration took place. Results constrain the main stages of mineral growth and deformation, associated with fluid influx that occurred in the subduction channel. In the Internal Complex (IC), pulses of fluid percolated at eclogite facies conditions between 77 and 55 Ma with the HP conditions reaching ∼ 2 GPa and 600–670 °C. By contrast, the External Complex (EC) records a lower pressure peak of ∼ 0.8 GPa for 500 °C at ∼ 63 Ma. The juxtaposition of the two complexes occurred during exhumation, probably at ∼ 0.8 GPa and 350 °C; the timing is constrained between 46 and 38 Ma. Mean vertical exhumation velocities are constrained between 0.9 and 5.1 mm year−1 for the IC, up to its juxtaposition with the EC. Exhumation to the surface occurred before 32 Ma, as constrained by the overlying Biella Volcanic Suite, at a mean vertical velocity between 1.6 and 4 mm year−1. These findings constrain the processes responsible for the assembly and exhumation of HP continental subunits, thus adding to our understanding of how continental terranes behave during subduction.

Journal ArticleDOI
TL;DR: In this article, the authors use scanning electron microscopy and nanotomography to offer critical insights into how the microstructure of a highly deformed quartzo-feldspathic ultramylonite evolved.
Abstract: . Establishing models for the formation of well-mixed polyphase domains in ultramylonites is difficult because the effects of large strains and thermo-hydro-chemo-mechanical feedbacks can obscure the transient phenomena that may be responsible for domain production. We use scanning electron microscopy and nanotomography to offer critical insights into how the microstructure of a highly deformed quartzo-feldspathic ultramylonite evolved. The dispersal of monomineralic quartz domains in the ultramylonite is interpreted to be the result of the emergence of synkinematic pores, called creep cavities. The cavities can be considered the product of two distinct mechanisms that formed hierarchically: Zener–Stroh cracking and viscous grain-boundary sliding. In initially thick and coherent quartz ribbons deforming by grain-size-insensitive creep, cavities were generated by the Zener–Stroh mechanism on grain boundaries aligned with the YZ plane of finite strain. The opening of creep cavities promoted the ingress of fluids to sites of low stress. The local addition of a fluid lowered the adhesion and cohesion of grain boundaries and promoted viscous grain-boundary sliding. With the increased contribution of viscous grain-boundary sliding, a second population of cavities formed to accommodate strain incompatibilities. Ultimately, the emergence of creep cavities is interpreted to be responsible for the transition of quartz domains from a grain-size-insensitive to a grain-size-sensitive rheology.

Journal ArticleDOI
TL;DR: In this paper, the authors evaluated NOVAC (Network for Observation of Volcanic and Atmospheric Change) gas emission data from the 2015 eruption of the Cotopaxi volcano (Ecuador) for BrO∕SO2 molar ratios.
Abstract: . We evaluated NOVAC (Network for Observation of Volcanic and Atmospheric Change) gas emission data from the 2015 eruption of the Cotopaxi volcano (Ecuador) for BrO∕SO2 molar ratios. The BrO∕SO2 molar ratios were very small prior to the phreatomagmatic explosions in August 2015, significantly higher after the explosions, and continuously increasing until the end of the unrest period in December 2015. These observations together with similar findings in previous studies at other volcanoes (Mt. Etna, Nevado del Ruiz, Tungurahua) suggest a possible link between a drop in BrO∕SO2 and a future explosion. In addition, the observed relatively high BrO∕SO2 molar ratios after December 2015 imply that bromine degassed predominately after sulfur from the magmatic melt. Furthermore, statistical analysis of the data revealed a conspicuous periodic pattern with a periodicity of about 2 weeks in a 3-month time series. While the time series is too short to rule out a chance recurrence of transient geological or meteorological events as a possible origin for the periodic signal, we nevertheless took this observation as a motivation to examine the influence of natural forcings with periodicities of around 2 weeks on volcanic gas emissions. One strong aspirant with such a periodicity are the Earth tides, which are thus central in this study. We present the BrO∕SO2 data, analyse the reliability of the periodic signal, discuss a possible meteorological or eruption-induced origin of this signal, and compare the signal with the theoretical ground surface displacement pattern caused by the Earth tides. Our central result is the observation of a significant correlation between the BrO∕SO2 molar ratios with the north–south and vertical components of the calculated tide-induced surface displacement with correlation coefficients of 47 and 36 %, respectively. From all other investigated parameters, only the correlation between the BrO∕SO2 molar ratios and the relative humidity in the local atmosphere resulted in a comparable correlation coefficient of about 33 %.

Journal ArticleDOI
TL;DR: In this article, the authors studied gouge from an upper-crustal, low-offset reverse fault in slightly overconsolidated claystone in the Mont Terri rock laboratory (Switzerland).
Abstract: . We studied gouge from an upper-crustal, low-offset reverse fault in slightly overconsolidated claystone in the Mont Terri rock laboratory (Switzerland). The laboratory is designed to evaluate the suitability of the Opalinus Clay formation (OPA) to host a repository for radioactive waste. The gouge occurs in thin bands and lenses in the fault zone; it is darker in color and less fissile than the surrounding rock. It shows a matrix-based, P-foliated microfabric bordered and truncated by micrometer-thin shear zones consisting of aligned clay grains, as shown with broad-ion-beam scanning electron microscopy (BIB-SEM) and optical microscopy. Selected area electron diffraction based on transmission electron microscopy (TEM) shows evidence for randomly oriented nanometer-sized clay particles in the gouge matrix, surrounding larger elongated phyllosilicates with a strict P foliation. For the first time for the OPA, we report the occurrence of amorphous SiO2 grains within the gouge. Gouge has lower SEM-visible porosity and almost no calcite grains compared to the undeformed OPA. We present two hypotheses to explain the origin of gouge in the Main Fault: (i) authigenic generation consisting of fluid-mediated removal of calcite from the deforming OPA during shearing and (ii) clay smear consisting of mechanical smearing of calcite-poor (yet to be identified) source layers into the fault zone. Based on our data we prefer the first or a combination of both, but more work is needed to resolve this. Microstructures indicate a range of deformation mechanisms including solution–precipitation processes and a gouge that is weaker than the OPA because of the lower fraction of hard grains. For gouge, we infer a more rate-dependent frictional rheology than suggested from laboratory experiments on the undeformed OPA.

Journal ArticleDOI
TL;DR: In this paper, the influence of the thermal and density structure of the upper mantle on the lithospheric stress field and topography was analyzed using a 3D lithosphere-asthenosphere numerical model with power-law rheology coupled with a spectral mantle flow code at 300 km depth.
Abstract: . The orientation and tectonic regime of the observed crustal/lithospheric stress field contribute to our knowledge of different deformation processes occurring within the Earth's crust and lithosphere. In this study, we analyze the influence of the thermal and density structure of the upper mantle on the lithospheric stress field and topography. We use a 3-D lithosphere–asthenosphere numerical model with power-law rheology, coupled to a spectral mantle flow code at 300 km depth. Our results are validated against the World Stress Map 2016 (WSM2016) and the observation-based residual topography. We derive the upper mantle thermal structure from either a heat flow model combined with a seafloor age model (TM1) or a global S-wave velocity model (TM2). We show that lateral density heterogeneities in the upper 300 km have a limited influence on the modeled horizontal stress field as opposed to the resulting dynamic topography that appears more sensitive to such heterogeneities. The modeled stress field directions, using only the mantle heterogeneities below 300 km, are not perturbed much when the effects of lithosphere and crust above 300 km are added. In contrast, modeled stress magnitudes and dynamic topography are to a greater extent controlled by the upper mantle density structure. After correction for the chemical depletion of continents, the TM2 model leads to a much better fit with the observed residual topography giving a good correlation of 0.51 in continents, but this correction leads to no significant improvement of the fit between the WSM2016 and the resulting lithosphere stresses. In continental regions with abundant heat flow data, TM1 results in relatively small angular misfits. For example, in western Europe the misfit between the modeled and observation-based stress is 18.3°. Our findings emphasize that the relative contributions coming from shallow and deep mantle dynamic forces are quite different for the lithospheric stress field and dynamic topography.

Journal ArticleDOI
TL;DR: In this paper, the authors showed that the vertical axis rotation of a SE Anatolian rotating block experienced a 30-35° counter-clockwise rotation since the Oligocene time relative to Eurasia, and they used the rotation patterns together with known fault zones to argue that the counter-rotation domain of south-central Anatolia was bounded by the Savcili Thrust Zone and Deliler-Tecer Fault Zone in the north and by the African-Arabian trench in the south, the western boundary of which is poorly constrained and requires future study.
Abstract: . To quantitatively reconstruct the kinematic evolution of Central and Eastern Anatolia within the framework of Neotethyan subduction accommodating Africa–Eurasia convergence, we paleomagnetically assess the timing and amount of vertical axis rotations across the Ulukisla and Sivas regions. We show paleomagnetic results from ∼ 30 localities identifying a coherent rotation of a SE Anatolian rotating block comprised of the southern Kirsehir Block, the Ulukisla Basin, the Central and Eastern Taurides, and the southern part of the Sivas Basin. Using our new and published results, we compute an apparent polar wander path (APWP) for this block since the Late Cretaceous, showing that it experienced a ∼ 30–35° counterclockwise vertical axis rotation since the Oligocene time relative to Eurasia. Sediments in the northern Sivas region show clockwise rotations. We use the rotation patterns together with known fault zones to argue that the counterclockwise-rotating domain of south-central Anatolia was bounded by the Savcili Thrust Zone and Deliler–Tecer Fault Zone in the north and by the African–Arabian trench in the south, the western boundary of which is poorly constrained and requires future study. Our new paleomagnetic constraints provide a key ingredient for future kinematic restorations of the Anatolian tectonic collage.

Journal ArticleDOI
TL;DR: In this paper, the results of general shear experiments on Black Hills Quartzite (BHQ) deformed in the dislocation creep regimes 1 to 3 have been reexamined using the higher spatial and orientational resolution of EBSD.
Abstract: . General shear experiments on Black Hills Quartzite (BHQ) deformed in the dislocation creep regimes 1 to 3 have been previously analyzed using the CIP method (Heilbronner and Tullis, 2002, 2006). They are reexamined using the higher spatial and orientational resolution of EBSD. Criteria for coherent segmentations based on c-axis orientation and on full crystallographic orientations are determined. Texture domains of preferred c-axis orientation (Y and B domains) are extracted and analyzed separately. Subdomains are recognized, and their shape and size are related to the kinematic framework and the original grains in the BHQ. Grain size analysis is carried out for all samples, high- and low-strain samples, and separately for a number of texture domains. When comparing the results to the recrystallized quartz piezometer of Stipp and Tullis (2003), it is found that grain sizes are consistently larger for a given flow stress. It is therefore suggested that the recrystallized grain size also depends on texture, grain-scale deformation intensity, and the kinematic framework (of axial vs. general shear experiments).