scispace - formally typeset
Open AccessJournal ArticleDOI

A whole brain fMRI atlas generated via spatially constrained spectral clustering

Reads0
Chats0
TLDR
A data‐driven method for generating an ROI atlas by parcellating whole brain resting‐state fMRI data into spatially coherent regions of homogeneous FC is introduced and several clustering statistics are used to compare methodological trade‐offs as well as determine an adequate number of clusters.
Abstract
Connectivity analyses and computational modeling of human brain function from fMRI data frequently require the specification of regions of interests (ROIs). Several analyses have relied on atlases derived from anatomical or cyto-architectonic boundaries to specify these ROIs, yet the suitability of atlases for resting state functional connectivity (FC) studies has yet to be established. This article introduces a data-driven method for generating an ROI atlas by parcellating whole brain resting-state fMRI data into spatially coherent regions of homogeneous FC. Several clustering statis- tics are used to compare methodological trade-offs as well as determine an adequate number of clus- ters. Additionally, we evaluate the suitability of the parcellation atlas against four ROI atlases (Talairach and Tournoux, Harvard-Oxford, Eickoff-Zilles, and Automatic Anatomical Labeling) and a random parcellation approach. The evaluated anatomical atlases exhibit poor ROI homogeneity and do not accurately reproduce FC patterns present at the voxel scale. In general, the proposed func- tional and random parcellations perform equivalently for most of the metrics evaluated. ROI size and hence the number of ROIs in a parcellation had the greatest impact on their suitability for FC analysis. With 200 or fewer ROIs, the resulting parcellations consist of ROIs with anatomic homol- ogy, and thus offer increased interpretability. Parcellation results containing higher numbers of ROIs (600 or 1,000) most accurately represent FC patterns present at the voxel scale and are preferable when interpretability can be sacrificed for accuracy. The resulting atlases and clustering software have been made publicly available at: http://www.nitrc.org/projects/cluster_roi/. Hum Brain Mapp

read more

Citations
More filters
Journal ArticleDOI

Tracking Whole-Brain Connectivity Dynamics in the Resting State

TL;DR: In this article, the authors describe an approach to assess whole-brain functional connectivity dynamics based on spatial independent component analysis, sliding time window correlation, and k-means clustering of windowed correlation matrices.
Journal ArticleDOI

Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity

TL;DR: In this article, the authors show that every individual has a unique pattern of functional connections between brain regions, which act as a fingerprint that can accurately identify the individual from a large group.
Journal ArticleDOI

The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism

A Di Martino, +50 more
- 01 Jun 2014 - 
TL;DR: W Whole-brain analyses reconciled seemingly disparate themes of both hypo- and hyperconnectivity in the ASD literature; both were detected, although hypoconnectivity dominated, particularly for corticocortical and interhemispheric functional connectivity.
Journal ArticleDOI

The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture

TL;DR: A connectivity-based parcellation framework is designed that identifies the subdivisions of the entire human brain, revealing the in vivo connectivity architecture and provides a fine-grained, cross-validated atlas and contains information on both anatomical and functional connections.
Journal ArticleDOI

Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI

TL;DR: The results suggest that gwMRF parcellations reveal neurobiologically meaningful features of brain organization and are potentially useful for future applications requiring dimensionality reduction of voxel-wise fMRI data.
References
More filters
Journal ArticleDOI

Silhouettes: a graphical aid to the interpretation and validation of cluster analysis

TL;DR: A new graphical display is proposed for partitioning techniques, where each cluster is represented by a so-called silhouette, which is based on the comparison of its tightness and separation, and provides an evaluation of clustering validity.
Journal ArticleDOI

Normalized cuts and image segmentation

TL;DR: This work treats image segmentation as a graph partitioning problem and proposes a novel global criterion, the normalized cut, for segmenting the graph, which measures both the total dissimilarity between the different groups as well as the total similarity within the groups.
Journal ArticleDOI

Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain

TL;DR: An anatomical parcellation of the spatially normalized single-subject high-resolution T1 volume provided by the Montreal Neurological Institute was performed and it is believed that this tool is an improvement for the macroscopical labeling of activated area compared to labeling assessed using the Talairach atlas brain.
Proceedings ArticleDOI

Normalized cuts and image segmentation

TL;DR: This work treats image segmentation as a graph partitioning problem and proposes a novel global criterion, the normalized cut, for segmenting the graph, which measures both the total dissimilarity between the different groups as well as the total similarity within the groups.
Related Papers (5)