scispace - formally typeset
Journal ArticleDOI

Aggregation of non-fullerene acceptors in organic solar cells

TLDR
In this article, the state-of-the-art organic solar cells employing non-fullerene acceptors (NFAs) have drawn significant research attention in recent years.
Abstract
Organic solar cells (OSCs) employing non-fullerene acceptors (NFAs) have drawn significant research attention in recent years. Molecular stacking and aggregation of electron donors and acceptors within the photoactive layer is vitally important for light absorption and the photon-to-electricity conversion process. Herein, we present the versatile molecular stacking of the state-of-the-art NFAs, as well as the affecting factors including the chemical structures of NFAs and physical processing conditions. We highlight in particular experimental approaches to regulate molecular stacking and aggregation and summarize the influences of these features on optoelectronic and photovoltaic properties of NFA-based OSCs, which provide crucial guidance for further development of high performance OSCs.

read more

Citations
More filters
Journal ArticleDOI

Renewed Prospects for Organic Photovoltaics.

TL;DR: The development and application of NFAs with an A-D-A configuration (where A = acceptor and D = donor) has enabled devices to have efficient charge generation and small energy losses (Eloss < 0.6 eV), resulting in substantially higher power conversion efficiencies (PCEs) than FA-based devices as discussed by the authors .
Journal ArticleDOI

Slip-Stacked J-Aggregate Materials for Organic Solar Cells and Photodetectors

TL;DR: In this article, the relationship between aggregate structure and functional properties of representative classes of dye aggregates is analyzed for the most advanced OSCs and wavelength-selective OPDs, providing important insights into the rational design of thin-film optoelectronic materials.
References
More filters
Journal ArticleDOI

Photoinduced electron transfer from a conducting polymer to buckminsterfullerene.

TL;DR: Because the photoluminescence in the conducting polymer is quenched by interaction with C60, the data imply that charge transfer from the excited state occurs on a picosecond time scale.
Journal ArticleDOI

Polymer solar cells

TL;DR: In this article, a review summarizes recent progress in the development of polymer solar cells and provides a synopsis of major achievements in the field over the past few years, while potential future developments and the applications of this technology are also briefly discussed.
Journal ArticleDOI

For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%

TL;DR: The past success in organic light-emitting diodes provides scientists with confidence that organic photovoltaic devices will be a vital alternate to the inorganic counterpart, and the easiness of the fabrication holds the promise of very low-cost manufacturing process.
Journal ArticleDOI

An electron acceptor challenging fullerenes for efficient polymer solar cells.

TL;DR: A novel non-fullerene electron acceptor (ITIC) that overcomes some of the shortcomings of fullerene acceptors, for example, weak absorption in the visible spectral region and limited energy-level variability, is designed and synthesized.
Journal ArticleDOI

Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells.

TL;DR: The uncovered aggregation and design rules yield three high-efficiency (>10%) donor polymers and will allow further synthetic advances and matching of both the polymer and fullerene materials, potentially leading to significantly improved performance and increased design flexibility.
Related Papers (5)