scispace - formally typeset
Open AccessJournal ArticleDOI

Alzheimer's disease: A matter of blood-brain barrier dysfunction?

Reads0
Chats0
TLDR
The role of blood–brain barrier dysfunction in Alzheimer’s neurodegeneration and how targeting the BBB can influence the course of neurological disorder in transgenic models with human APP, PSEN1 and TAU mutations, APOE4 (major genetic risk), and pericyte degeneration causing loss of BBB integrity are examined.
Abstract
The blood-brain barrier (BBB) keeps neurotoxic plasma-derived components, cells, and pathogens out of the brain. An early BBB breakdown and/or dysfunction have been shown in Alzheimer's disease (AD) before dementia, neurodegeneration and/or brain atrophy occur. However, the role of BBB breakdown in neurodegenerative disorders is still not fully understood. Here, we examine BBB breakdown in animal models frequently used to study the pathophysiology of AD, including transgenic mice expressing human amyloid-β precursor protein, presenilin 1, and tau mutations, and apolipoprotein E, the strongest genetic risk factor for AD. We discuss the role of BBB breakdown and dysfunction in neurodegenerative process, pitfalls in BBB measurements, and how targeting the BBB can influence the course of neurological disorder. Finally, we comment on future approaches and models to better define, at the cellular and molecular level, the underlying mechanisms between BBB breakdown and neurodegeneration as a basis for developing new therapies for BBB repair to control neurodegeneration.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders

TL;DR: This Review discusses neuroimaging studies in the living human brain and post-mortem tissue as well as biomarker studies demonstrating BBB breakdown in Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, multiple sclerosis, HIV-1-associated dementia and chronic traumatic encephalopathy.
Journal ArticleDOI

Blood-Brain Barrier: From Physiology to Disease and Back

TL;DR: This review examines molecular and cellular mechanisms underlying the establishment of the blood-brain barrier, and examines how BBB dysfunction relates to neurological deficits and other pathologies in the majority of sporadic AD, PD, and ALS cases, multiple sclerosis, other neurodegenerative disorders, and acute CNS disorders.
Journal ArticleDOI

The role of brain vasculature in neurodegenerative disorders.

TL;DR: A hypothetical model of Alzheimer’s disease biomarkers is proposed to include brain vasculature as a factor contributing to the disease onset and progression, and a common pathway linking brain vascular contributions to neurodegeneration in multiple Neurodegenerative disorders is suggested.
References
More filters
Journal ArticleDOI

The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat.

TL;DR: The method can be applied to most laboratory animals in the conscious state and is based on the use of 2‐deoxy‐D‐[14C]glucose as a tracer for the exchange of glucose between plasma and brain and its phosphorylation by hexokinase in the tissues.
Journal ArticleDOI

Correlative Memory Deficits, Aβ Elevation, and Amyloid Plaques in Transgenic Mice

TL;DR: Transgenic mice overexpressing the 695-amino acid isoform of human Alzheimer β-amyloid (Aβ) precursor protein containing a Lys670 → Asn, Met671 → Leu mutation had normal learning and memory but showed impairment by 9 to 10 months of age.
Journal ArticleDOI

Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration

TL;DR: This Position Paper summarises the main outcomes of this international effort to provide the STandards for ReportIng Vascular changes on nEuroimaging (STRIVE).
Journal ArticleDOI

A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β.

TL;DR: An anatomically distinct clearing system in the brain that serves a lymphatic-like function is described and may have relevance for understanding or treating neurodegenerative diseases that involve the mis-accumulation of soluble proteins, such as amyloid β in Alzheimer's disease.
Journal ArticleDOI

Sleep Drives Metabolite Clearance From the Adult Brain

TL;DR: It is reported that sleep has a critical function in ensuring metabolic homeostasis and convective fluxes of interstitial fluid increased the rate of β-amyloid clearance during sleep, suggesting the restorative function of sleep may be a consequence of the enhanced removal of potentially neurotoxic waste products that accumulate in the awake central nervous system.
Related Papers (5)