scispace - formally typeset
Search or ask a question

Showing papers in "Science Translational Medicine in 2012"


Journal ArticleDOI
TL;DR: An anatomically distinct clearing system in the brain that serves a lymphatic-like function is described and may have relevance for understanding or treating neurodegenerative diseases that involve the mis-accumulation of soluble proteins, such as amyloid β in Alzheimer's disease.
Abstract: Because it lacks a lymphatic circulation, the brain must clear extracellular proteins by an alternative mechanism. The cerebrospinal fluid (CSF) functions as a sink for brain extracellular solutes, but it is not clear how solutes from the brain interstitium move from the parenchyma to the CSF. We demonstrate that a substantial portion of subarachnoid CSF cycles through the brain interstitial space. On the basis of in vivo two-photon imaging of small fluorescent tracers, we showed that CSF enters the parenchyma along paravascular spaces that surround penetrating arteries and that brain interstitial fluid is cleared along paravenous drainage pathways. Animals lacking the water channel aquaporin-4 (AQP4) in astrocytes exhibit slowed CSF influx through this system and a ~70% reduction in interstitial solute clearance, suggesting that the bulk fluid flow between these anatomical influx and efflux routes is supported by astrocytic water transport. Fluorescent-tagged amyloid β, a peptide thought to be pathogenic in Alzheimer's disease, was transported along this route, and deletion of the Aqp4 gene suppressed the clearance of soluble amyloid β, suggesting that this pathway may remove amyloid β from the central nervous system. Clearance through paravenous flow may also regulate extracellular levels of proteins involved with neurodegenerative conditions, its impairment perhaps contributing to the mis-accumulation of soluble proteins.

3,368 citations


Journal ArticleDOI
TL;DR: The importance of fungi as human pathogens is highlighted and the challenges the authors face in combating the devastating invasive infections caused by these microorganisms are discussed, in particular in immunocompromised individuals.
Abstract: Although fungal infections contribute substantially to human morbidity and mortality, the impact of these diseases on human health is not widely appreciated. Moreover, despite the urgent need for efficient diagnostic tests and safe and effective new drugs and vaccines, research into the pathophysiology of human fungal infections lags behind that of diseases caused by other pathogens. In this Review, we highlight the importance of fungi as human pathogens and discuss the challenges we face in combating the devastating invasive infections caused by these microorganisms, in particular in immunocompromised individuals.

3,125 citations


Journal ArticleDOI
TL;DR: Induction of the B7-H1/PD-1 pathway may represent an adaptive immune resistance mechanism exerted by tumor cells in response to endogenous antitumor activity and may explain how melanomas escape immune destruction despite endogenous antitUMor immune responses.
Abstract: In the movie The Great Escape , “problem” prisoners with multiple escape attempts are put in an “escape-proof” POW camp, where they use their cleverness and specialized skills to outwit their captors. However, when it comes to escaping, even Steve McQueen doesn’t have anything on cancer cells. Although human cancers express tumor antigens recognized by the immune system, host immune responses often fail to control tumor growth. Taube et al. now explain one way in which tumor cells may adapt to escape from immune surveillance. The researchers found a strong association between expression of the immune-inhibitory molecule B7-H1 (PD-L1) on melanocytes and immune cell infiltration into tumors in patients with different stages of melanoma. The B7-H1+ melanocytes were found directly adjacent to the immune cells, with interferon-γ detected at the melanocyte–immune cell interface. Interferon-γ, which is secreted by the immune cells, induces B7-H1 expression; thus, the tumor may adapt by causing immune cells to trigger their own inhibition. Indeed, patients with B7-H1+ metastatic melanoma had prolonged overall survival when compared with B7-H1− metastatic melanoma patients, perhaps suggesting that B7-H1 expression by the tumors is stimulated by a more successful immune response. It remains to be seen whether blocking B7-H1 in these patients will further improve survival. But it is clear that for both prisoners and tumors, adaptation is the key to escape.

1,924 citations


Journal ArticleDOI
TL;DR: Findings from a series of lung cancer patients with acquired resistance to the ALK TKI crizotinib reinforce the need to tailor therapeutic strategies to the specific underlying drug resistance mechanisms in the tumors to improve clinical outcomes.
Abstract: Most anaplastic lymphoma kinase (ALK)–positive non–small cell lung cancers (NSCLCs) are highly responsive to treatment with ALK tyrosine kinase inhibitors (TKIs). However, patients with these cancers invariably relapse, typically within 1 year, because of the development of drug resistance. Herein, we report findings from a series of lung cancer patients (n = 18) with acquired resistance to the ALK TKI crizotinib. In about one-fourth of patients, we identified a diverse array of secondary mutations distributed throughout the ALK TK domain, including new resistance mutations located in the solvent-exposed region of the adenosine triphosphate–binding pocket, as well as amplification of the ALK fusion gene. Next-generation ALK inhibitors, developed to overcome crizotinib resistance, had differing potencies against specific resistance mutations. In addition to secondary ALK mutations and ALK gene amplification, we also identified aberrant activation of other kinases including marked amplification of KIT and increased autophosphorylation of epidermal growth factor receptor in drug-resistant tumors from patients. In a subset of patients, we found evidence of multiple resistance mechanisms developing simultaneously. These results highlight the unique features of TKI resistance in ALK-positive NSCLCs and provide the rationale for pursuing combinatorial therapeutics that are tailored to the precise resistance mechanisms identified in patients who relapse on crizotinib treatment.

1,178 citations


Journal ArticleDOI
TL;DR: Levels of mutant alleles reflected the clinical course of the disease and its treatment—for example, stabilized disease was associated with low allelic frequency, whereas patients at relapse exhibited a rise in frequency, and TAm-Seq will need to achieve a more sensitive detection limit to identify mutations in the plasma of patients with less advanced cancers.
Abstract: Plasma of cancer patients contains cell-free tumor DNA that carries information on tumor mutations and tumor burden. Individual mutations have been probed using allele-specific assays, but sequencing of entire genes to detect cancer mutations in circulating DNA has not been demonstrated. We developed a method for tagged-amplicon deep sequencing (TAm-Seq) and screened 5995 genomic bases for low-frequency mutations. Using this method, we identified cancer mutations present in circulating DNA at allele frequencies as low as 2%, with sensitivity and specificity of >97%. We identified mutations throughout the tumor suppressor gene TP53 in circulating DNA from 46 plasma samples of advanced ovarian cancer patients. We demonstrated use of TAm-Seq to noninvasively identify the origin of metastatic relapse in a patient with multiple primary tumors. In another case, we identified in plasma an EGFR mutation not found in an initial ovarian biopsy. We further used TAm-Seq to monitor tumor dynamics, and tracked 10 concomitant mutations in plasma of a metastatic breast cancer patient over 16 months. This low-cost, high-throughput method could facilitate analysis of circulating DNA as a noninvasive "liquid biopsy" for personalized cancer genomics.

1,155 citations


Journal ArticleDOI
TL;DR: The temporal dynamics of the composition of vaginal bacterial communities in 32 reproductive-age women over a 16-week period revealed the dynamics of five major classes of bacterial communities and showed that some communities change markedly over short time periods, whereas others are relatively stable.
Abstract: Elucidating the factors that impinge on the stability of bacterial communities in the vagina may help in predicting the risk of diseases that affect women’s health. Here, we describe the temporal dynamics of the composition of vaginal bacterial communities in 32 reproductive-age women over a 16-week period. The analysis revealed the dynamics of five major classes of bacterial communities and showed that some communities change markedly over short time periods, whereas others are relatively stable. Modeling community stability using new quantitative measures indicates that deviation from stability correlates with time in the menstrual cycle, bacterial community composition, and sexual activity. The women studied are healthy; thus, it appears that neither variation in community composition per se nor higher levels of observed diversity (co-dominance) are necessarily indicative of dysbiosis.

1,114 citations


Journal ArticleDOI
TL;DR: Developing and clinical translation of a targeted polymeric nanoparticle (TNP) containing the chemotherapeutic docetaxel (DTXL) for the treatment of patients with solid tumors and initial clinical data indicated that DTXL-TNP displays a pharmacological profile differentiated from sb-DTXL.
Abstract: We describe the development and clinical translation of a targeted polymeric nanoparticle (TNP) containing the chemotherapeutic docetaxel (DTXL) for the treatment of patients with solid tumors DTXL-TNP is targeted to prostate-specific membrane antigen, a clinically validated tumor antigen expressed on prostate cancer cells and on the neovasculature of most nonprostate solid tumors DTXL-TNP was developed from a combinatorial library of more than 100 TNP formulations varying with respect to particle size, targeting ligand density, surface hydrophilicity, drug loading, and drug release properties Pharmacokinetic and tissue distribution studies in rats showed that the NPs had a blood circulation half-life of about 20 hours and minimal liver accumulation In tumor-bearing mice, DTXL-TNP exhibited markedly enhanced tumor accumulation at 12 hours and prolonged tumor growth suppression compared to a solvent-based DTXL formulation (sb-DTXL) In tumor-bearing mice, rats, and nonhuman primates, DTXL-TNP displayed pharmacokinetic characteristics consistent with prolonged circulation of NPs in the vascular compartment and controlled release of DTXL, with total DTXL plasma concentrations remaining at least 100-fold higher than sb-DTXL for more than 24 hours Finally, initial clinical data in patients with advanced solid tumors indicated that DTXL-TNP displays a pharmacological profile differentiated from sb-DTXL, including pharmacokinetics characteristics consistent with preclinical data and cases of tumor shrinkage at doses below the sb-DTXL dose typically used in the clinic

1,029 citations


Journal ArticleDOI
TL;DR: Evidence of chronic traumatic encephalopathy (CTE), a tau protein–linked neurodegenerative disease, was found that was similar to the CTE neuropathology observed in young amateur American football players and a professional wrestler with histories of concussive injuries.
Abstract: Blast exposure is associated with traumatic brain injury (TBI), neuropsychiatric symptoms, and long-term cognitive disability. We examined a case series of postmortem brains from U.S. military veterans exposed to blast and/or concussive injury. We found evidence of chronic traumatic encephalopathy (CTE), a tau protein–linked neurodegenerative disease, that was similar to the CTE neuropathology observed in young amateur American football players and a professional wrestler with histories of concussive injuries. We developed a blast neurotrauma mouse model that recapitulated CTE-linked neuropathology in wild-type C57BL/6 mice 2 weeks after exposure to a single blast. Blast-exposed mice demonstrated phosphorylated tauopathy, myelinated axonopathy, microvasculopathy, chronic neuroinflammation, and neurodegeneration in the absence of macroscopic tissue damage or hemorrhage. Blast exposure induced persistent hippocampal-dependent learning and memory deficits that persisted for at least 1 month and correlated with impaired axonal conduction and defective activity-dependent long-term potentiation of synaptic transmission. Intracerebral pressure recordings demonstrated that shock waves traversed the mouse brain with minimal change and without thoracic contributions. Kinematic analysis revealed blast-induced head oscillation at accelerations sufficient to cause brain injury. Head immobilization during blast exposure prevented blast-induced learning and memory deficits. The contribution of blast wind to injurious head acceleration may be a primary injury mechanism leading to blast-related TBI and CTE. These results identify common pathogenic determinants leading to CTE in blast-exposed military veterans and head-injured athletes and additionally provide mechanistic evidence linking blast exposure to persistent impairments in neurophysiological function, learning, and memory.

842 citations


Journal ArticleDOI
TL;DR: Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing revealed its origin and probable modes of transmission, and revealed the weaknesses in this medical who-done-it, informing improvements in hospital preventive measures.
Abstract: The Gram-negative bacteria Klebsiella pneumoniae is a major cause of nosocomial infections, primarily among immunocompromised patients. The emergence of strains resistant to carbapenems has left few treatment options, making infection containment critical. In 2011, the U.S. National Institutes of Health Clinical Center experienced an outbreak of carbapenem-resistant K. pneumoniae that affected 18 patients, 11 of whom died. Whole-genome sequencing was performed on K. pneumoniae isolates to gain insight into why the outbreak progressed despite early implementation of infection control procedures. Integrated genomic and epidemiological analysis traced the outbreak to three independent transmissions from a single patient who was discharged 3 weeks before the next case became clinically apparent. Additional genomic comparisons provided evidence for unexpected transmission routes, with subsequent mining of epidemiological data pointing to possible explanations for these transmissions. Our analysis demonstrates that integration of genomic and epidemiological data can yield actionable insights and facilitate the control of nosocomial transmission.

828 citations


Journal ArticleDOI
TL;DR: PrEP using oral FTC-TDF tablets is a robust intervention for preventing HIV acquisition among men who have sex with men, and specific drug concentrations associated with protection from HIV-1 acquisition in the iPrEx trial are estimated.
Abstract: Drug concentrations associated with protection from HIV-1 acquisition have not been determined. We evaluated drug concentrations among men who have sex with men in a substudy of the iPrEx trial (1). In this randomized placebo-controlled trial, daily oral doses of emtricitabine/tenofovir disoproxil fumarate were used as pre-exposure prophylaxis (PrEP) in men who have sex with men. Drug was detected less frequently in blood plasma and in viable cryopreserved peripheral blood mononuclear cells (PBMCs) in HIV-infected cases at the visit when HIV was first discovered compared with controls at the matched time point of the study (8% versus 44%; P < 0.001) and in the 90 days before that visit (11% versus 51%; P < 0.001). An intracellular concentration of the active form of tenofovir, tenofovir-diphosphate (TFV-DP), of 16 fmol per million PBMCs was associated with a 90% reduction in HIV acquisition relative to the placebo arm. Directly observed dosing in a separate study, the STRAND trial, yielded TFV-DP concentrations that, when analyzed according to the iPrEx model, corresponded to an HIV-1 risk reduction of 76% for two doses per week, 96% for four doses per week, and 99% for seven doses per week. Prophylactic benefits were observed over a range of doses and drug concentrations, suggesting ways to optimize PrEP regimens for this population.

800 citations


Journal ArticleDOI
TL;DR: In humans, prolonged sleep restriction with concurrent circadian disruption alters metabolism and could increase the risk of obesity and diabetes, and a cautionary message for employers to guard against causing adverse metabolic effects in workers by their shift scheduling practices is carried.
Abstract: Epidemiological studies link short sleep duration and circadian disruption with higher risk of metabolic syndrome and diabetes. We tested the hypotheses that prolonged sleep restriction with concurrent circadian disruption, as can occur in people performing shift work, impairs glucose regulation and metabolism. Healthy adults spent >5 weeks under controlled laboratory conditions in which they experienced an initial baseline segment of optimal sleep, 3 weeks of sleep restriction (5.6 hours of sleep per 24 hours) combined with circadian disruption (recurring 28-hour "days"), followed by 9 days of recovery sleep with circadian re-entrainment. Exposure to prolonged sleep restriction with concurrent circadian disruption, with measurements taken at the same circadian phase, decreased the participants' resting metabolic rate and increased plasma glucose concentrations after a meal, an effect resulting from inadequate pancreatic insulin secretion. These parameters normalized during the 9 days of recovery sleep and stable circadian re-entrainment. Thus, in humans, prolonged sleep restriction with concurrent circadian disruption alters metabolism and could increase the risk of obesity and diabetes.

Journal ArticleDOI
TL;DR: The human lung on a microfluidic chip is recreated and shown that it not only mimics lung function in response to IL-2 and mechanical strain but also successfully predicts the activity of a new drug for pulmonary edema.
Abstract: Preclinical drug development studies currently rely on costly and time-consuming animal testing because existing cell culture models fail to recapitulate complex, organ-level disease processes in humans. We provide the proof of principle for using a biomimetic microdevice that reconstitutes organ-level lung functions to create a human disease model-on-a-chip that mimics pulmonary edema. The microfluidic device, which reconstitutes the alveolar-capillary interface of the human lung, consists of channels lined by closely apposed layers of human pulmonary epithelial and endothelial cells that experience air and fluid flow, as well as cyclic mechanical strain to mimic normal breathing motions. This device was used to reproduce drug toxicity-induced pulmonary edema observed in human cancer patients treated with interleukin-2 (IL-2) at similar doses and over the same time frame. Studies using this on-chip disease model revealed that mechanical forces associated with physiological breathing motions play a crucial role in the development of increased vascular leakage that leads to pulmonary edema, and that circulating immune cells are not required for the development of this disease. These studies also led to identification of potential new therapeutics, including angiopoietin-1 (Ang-1) and a new transient receptor potential vanilloid 4 (TRPV4) ion channel inhibitor (GSK2193874), which might prevent this life-threatening toxicity of IL-2 in the future.

Journal ArticleDOI
TL;DR: This model in which AML develops by serial acquisition of mutations in long-lived self-renewing hematopoietic stem cells (HSCs) suggest the clonal evolution of AML genomes from founder mutations, revealing a potential mechanism contributing to relapse.
Abstract: Given that most bone marrow cells are short-lived, the accumulation of multiple leukemogenic mutations in a single clonal lineage has been difficult to explain. We propose that serial acquisition of mutations occurs in self-renewing hematopoietic stem cells (HSCs). We investigated this model through genomic analysis of HSCs from six patients with de novo acute myeloid leukemia (AML). Using exome sequencing, we identified mutations present in individual AML patients harboring the FLT3-ITD (internal tandem duplication) mutation. We then screened the residual HSCs and detected some of these mutations including mutations in the NPM1, TET2, and SMC1A genes. Finally, through single-cell analysis, we determined that a clonal progression of multiple mutations occurred in the HSCs of some AML patients. These preleukemic HSCs suggest the clonal evolution of AML genomes from founder mutations, revealing a potential mechanism contributing to relapse. Such preleukemic HSCs may constitute a cellular reservoir that should be targeted therapeutically for more durable remissions.

Journal ArticleDOI
TL;DR: This review highlights advances in tissue engineering technologies to enable regeneration of complex tissues and organs and to discuss how such innovative, engineered tissues can affect the clinic.
Abstract: Tissue engineering has emerged at the intersection of numerous disciplines to meet a global clinical need for technologies to promote the regeneration of functional living tissues and organs. The complexity of many tissues and organs, coupled with confounding factors that may be associated with the injury or disease underlying the need for repair, is a challenge to traditional engineering approaches. Biomaterials, cells, and other factors are needed to design these constructs, but not all tissues are created equal. Flat tissues (skin); tubular structures (urethra); hollow, nontubular, viscus organs (vagina); and complex solid organs (liver) all present unique challenges in tissue engineering. This review highlights advances in tissue engineering technologies to enable regeneration of complex tissues and organs and to discuss how such innovative, engineered tissues can affect the clinic.

Journal ArticleDOI
TL;DR: Better than tarot cards or crystal balls, the authors show that intricate analyses of observational clinical data can improve physicians’ ability to predict the future—at least with respect to as yet uncharacterized adverse drug effects and interactions.
Abstract: Adverse drug events remain a leading cause of morbidity and mortality around the world. Many adverse events are not detected during clinical trials before a drug receives approval for use in the clinic. Fortunately, as part of postmarketing surveillance, regulatory agencies and other institutions maintain large collections of adverse event reports, and these databases present an opportunity to study drug effects from patient population data. However, confounding factors such as concomitant medications, patient demographics, patient medical histories, and reasons for prescribing a drug often are uncharacterized in spontaneous reporting systems, and these omissions can limit the use of quantitative signal detection methods used in the analysis of such data. Here, we present an adaptive data-driven approach for correcting these factors in cases for which the covariates are unknown or unmeasured and combine this approach with existing methods to improve analyses of drug effects using three test data sets. We also present a comprehensive database of drug effects (Offsides) and a database of drug-drug interaction side effects (Twosides). To demonstrate the biological use of these new resources, we used them to identify drug targets, predict drug indications, and discover drug class interactions. We then corroborated 47 ( P

Journal ArticleDOI
TL;DR: Human induced pluripotent stem cells generated from patients with familial dilated cardiomyopathy model cardiovascular disease could provide an important platform to investigate the specific disease mechanisms of DCM as well as other inherited cardiovascular disorders and for screening new drugs for cardiovascular disease.
Abstract: Characterized by ventricular dilatation, systolic dysfunction, and progressive heart failure, dilated cardiomyopathy (DCM) is the most common form of cardiomyopathy in patients. DCM is the most common diagnosis leading to heart transplantation and places a significant burden on healthcare worldwide. The advent of induced pluripotent stem cells (iPSCs) offers an exceptional opportunity for creating disease-specific cellular models, investigating underlying mechanisms, and optimizing therapy. Here, we generated cardiomyocytes from iPSCs derived from patients in a DCM family carrying a point mutation (R173W) in the gene encoding sarcomeric protein cardiac troponin T. Compared to control healthy individuals in the same family cohort, cardiomyocytes derived from iPSCs from DCM patients exhibited altered regulation of calcium ion (Ca 2+ ), decreased contractility, and abnormal distribution of sarcomeric a-actinin. When stimulated with a b-adrenergic agonist, DCM iPSC–derived cardiomyocytes showed characteristics of cellular stress such as reduced beating rates, compromised contraction, and ag reater number of cellswith abnormal sarcomeric a-actinin distribution. Treatment with b-adrenergic blockers or overexpression of sarcoplasmic reticulum Ca 2+ adenosine triphosphatase (Serca2a) improved the function of iPSC-derived cardiomyocytes from DCM patients. Thus, iPSC-derived cardiomyocytes from DCM patients recapitulate to some extent the morphological and functional phenotypes of DCM and may serve as a useful platform for exploring disease mechanisms and for drug screening.

Journal ArticleDOI
TL;DR: An approach to directly identify tumor-derived chromosomal alterations through analysis of circulating cell-free DNA from cancer patients is described and represents a useful method for the noninvasive detection of human tumors that is not dependent on the availability of tumor biopsies.
Abstract: Clinical management of cancer patients could be improved through the development of noninvasive approaches for the detection of incipient, residual, and recurrent tumors. We describe an approach to directly identify tumor-derived chromosomal alterations through analysis of circulating cell-free DNA from cancer patients. Whole-genome analyses of DNA from the plasma of 10 colorectal and breast cancer patients and 10 healthy individuals with massively parallel sequencing identified, in all patients, structural alterations that were not present in plasma DNA from healthy subjects. Detected alterations comprised chromosomal copy number changes and rearrangements, including amplification of cancer driver genes such as ERBB2 and CDK6. The level of circulating tumor DNA in the cancer patients ranged from 1.4 to 47.9%. The sensitivity and specificity of this approach are dependent on the amount of sequence data obtained and are derived from the fact that most cancers harbor multiple chromosomal alterations, each of which is unlikely to be present in normal cells. Given that chromosomal abnormalities are present in nearly all human cancers, this approach represents a useful method for the noninvasive detection of human tumors that is not dependent on the availability of tumor biopsies.

Journal ArticleDOI
TL;DR: This review provides design guidelines for infection-reducing strategies based on the concept that the fate of biomaterial implants or devices is a competition between host tissue cell integration and bacterial colonization at their surfaces.
Abstract: Biomaterial-associated infections occur on both permanent implants and temporary devices for restoration or support of human functions. Despite increasing use of biomaterials in an aging society, comparatively few biomaterials have been designed that effectively reduce the incidence of biomaterial-associated infections. This review provides design guidelines for infection-reducing strategies based on the concept that the fate of biomaterial implants or devices is a competition between host tissue cell integration and bacterial colonization at their surfaces.

Journal ArticleDOI
TL;DR: These findings indicate that host immunosuppression before T cell transfer is not required to achieve long-term persistence of gene-modified T cells, and emphasize the safety of T cells modified by retroviral gene transfer in clinical application, as measured in >500 patient-years of follow-up.
Abstract: The success of adoptive T cell gene transfer for treatment of cancer and HIV is predicated on generating a response that is both durable and safe. We report long-term results from three clinical trials to evaluate gammaretroviral vector–engineered T cells for HIV. The vector encoded a chimeric antigen receptor (CAR) composed of CD4 linked to the CD3ζ signaling chain (CD4ζ). CAR T cells were detected in 98% of samples tested for at least 11 years after infusion at frequencies that exceeded average T cell levels after most vaccine approaches. The CD4ζ transgene retained expression and function. There was no evidence of vector-induced immortalization of cells; integration site distributions showed no evidence of persistent clonal expansion or enrichment for integration sites near genes implicated in growth control or transformation. The CD4ζ T cells had stable levels of engraftment, with decay half-lives that exceeded 16 years, in marked contrast to previous trials testing engineered T cells. These findings indicate that host immunosuppression before T cell transfer is not required to achieve long-term persistence of gene-modified T cells. Further, our results emphasize the safety of T cells modified by retroviral gene transfer in clinical application, as measured in >500 patient-years of follow-up. Thus, previous safety issues with integrating viral vectors are hematopoietic stem cell or transgene intrinsic, and not a general feature of retroviral vectors. Engineered T cells are a promising form of synthetic biology for long-term delivery of protein-based therapeutics. These results provide a framework to guide the therapy of a wide spectrum of human diseases.

Journal ArticleDOI
TL;DR: A method that uses whole-genome sequencing (WGS) to achieve a differential diagnosis of genetic disorders in 50 hours rather than the 4 to 6 weeks is described and is intended to be a prototype for use in neonatal intensive care units.
Abstract: Monogenic diseases are frequent causes of neonatal morbidity and mortality, and disease presentations are often undifferentiated at birth. More than 3500 monogenic diseases have been characterized, but clinical testing is available for only some of them and many feature clinical and genetic heterogeneity. Hence, an immense unmet need exists for improved molecular diagnosis in infants. Because disease progression is extremely rapid, albeit heterogeneous, in newborns, molecular diagnoses must occur quickly to be relevant for clinical decision-making. We describe 50-hour differential diagnosis of genetic disorders by whole-genome sequencing (WGS) that features automated bioinformatic analysis and is intended to be a prototype for use in neonatal intensive care units. Retrospective 50-hour WGS identified known molecular diagnoses in two children. Prospective WGS disclosed potential molecular diagnosis of a severe GJB2-related skin disease in one neonate; BRAT1-related lethal neonatal rigidity and multifocal seizure syndrome in another infant; identified BCL9L as a novel, recessive visceral heterotaxy gene (HTX6) in a pedigree; and ruled out known candidate genes in one infant. Sequencing of parents or affected siblings expedited the identification of disease genes in prospective cases. Thus, rapid WGS can potentially broaden and foreshorten differential diagnosis, resulting in fewer empirical treatments and faster progression to genetic and prognostic counseling.

Journal ArticleDOI
TL;DR: The ability to achieve brain penetration with larger nanoparticles is expected to allow more uniform, longer-lasting, and effective delivery of drugs within the brain, and may find use in the treatment of brain tumors, stroke, neuroinflammation, and other brain diseases where the blood-brain barrier is compromised or where local delivery strategies are feasible.
Abstract: Prevailing opinion suggests that only substances up to 64 nm in diameter can move at appreciable rates through the brain extracellular space (ECS). This size range is large enough to allow diffusion of signaling molecules, nutrients, and metabolic waste products, but too small to allow efficient penetration of most particulate drug delivery systems and viruses carrying therapeutic genes, thereby limiting effectiveness of many potential therapies. We analyzed the movements of nanoparticles of various diameters and surface coatings within fresh human and rat brain tissue ex vivo and mouse brain in vivo. Nanoparticles as large as 114 nm in diameter diffused within the human and rat brain, but only if they were densely coated with poly(ethylene glycol) (PEG). Using these minimally adhesive PEG-coated particles, we estimated that human brain tissue ECS has some pores larger than 200 nm and that more than one-quarter of all pores are ≥100 nm. These findings were confirmed in vivo in mice, where 40- and 100-nm, but not 200-nm, nanoparticles spread rapidly within brain tissue, only if densely coated with PEG. Similar results were observed in rat brain tissue with paclitaxel-loaded biodegradable nanoparticles of similar size (85 nm) and surface properties. The ability to achieve brain penetration with larger nanoparticles is expected to allow more uniform, longer-lasting, and effective delivery of drugs within the brain, and may find use in the treatment of brain tumors, stroke, neuroinflammation, and other brain diseases where the blood-brain barrier is compromised or where local delivery strategies are feasible.

Journal ArticleDOI
TL;DR: It is suggested that multiple cycles of fasting promote differential stress sensitization in a wide range of tumors and could potentially replace or augment the efficacy of certain chemotherapy drugs in the treatment of various cancers.
Abstract: Short-term starvation (or fasting) protects normal cells, mice, and potentially humans from the harmful side effects of a variety of chemotherapy drugs. Here, we show that treatment with starvation conditions sensitized yeast cells (Saccharomyces cerevisiae) expressing the oncogene-like RAS2val19 to oxidative stress and 15 of 17 mammalian cancer cell lines to chemotherapeutic agents. Cycles of starvation were as effective as chemotherapeutic agents in delaying progression of different tumors and increased the effectiveness of these drugs against melanoma, glioma, and breast cancer cells. In mouse models of neuroblastoma, fasting cycles plus chemotherapy drugs—but not either treatment alone—resulted in long-term cancer-free survival. In 4T1 breast cancer cells, short-term starvation resulted in increased phosphorylation of the stress-sensitizing Akt and S6 kinases, increased oxidative stress, caspase-3 cleavage, DNA damage, and apoptosis. These studies suggest that multiple cycles of fasting promote differential stress sensitization in a wide range of tumors and could potentially replace or augment the efficacy of certain chemotherapy drugs in the treatment of various cancers.

Journal ArticleDOI
TL;DR: The new work provides an encouraging step toward using motor neurons generated from iPSCs derived from ALS patients to learn more about what triggers the death of motor neurons in this disease and to identify new candidate drugs that may be able to slow or reverse the devastating loss ofMotor neurons.
Abstract: Amyotrophic lateral sclerosis (ALS) is a late-onset, fatal disorder in which the motor neurons degenerate. The discovery of new drugs for treating ALS has been hampered by a lack of access to motor neurons from ALS patients and appropriate disease models. We generate motor neurons from induced pluripotent stem cells (iPSCs) from familial ALS patients, who carry mutations in Tar DNA binding protein-43 (TDP-43). ALS patient–specific iPSC–derived motor neurons formed cytosolic aggregates similar to those seen in postmortem tissue from ALS patients and exhibited shorter neurites as seen in a zebrafish model of ALS. The ALS motor neurons were characterized by increased mutant TDP-43 protein in a detergent-insoluble form bound to a spliceosomal factor SNRPB2. Expression array analyses detected small increases in the expression of genes involved in RNA metabolism and decreases in the expression of genes encoding cytoskeletal proteins. We examined four chemical compounds and found that a histone acetyltransferase inhibitor called anacardic acid rescued the abnormal ALS motor neuron phenotype. These findings suggest that motor neurons generated from ALS patient–derived iPSCs may provide a useful tool for elucidating ALS disease pathogenesis and for screening drug candidates.

Journal ArticleDOI
TL;DR: Envisaging tumor growth as a Darwinian tree with the trunk representing ubiquitous mutations and the branches representing heterogeneous mutations may help in drug discovery and the development of predictive biomarkers of drug response.
Abstract: Most advanced solid tumors remain incurable, with resistance to chemotherapeutics and targeted therapies a common cause of poor clinical outcome. Intratumor heterogeneity may contribute to this failure by initiating phenotypic diversity enabling drug resistance to emerge and by introducing tumor sampling bias. Envisaging tumor growth as a Darwinian tree with the trunk representing ubiquitous mutations and the branches representing heterogeneous mutations may help in drug discovery and the development of predictive biomarkers of drug response.

Journal ArticleDOI
TL;DR: The finding that miR-21 is a major player in kidney fibrosis suggests that drugs that inhibit miR -21, like the complementary oligonucleotides used in this study, might prove to be useful therapies in humans.
Abstract: Scarring of the kidney is a major public health concern, directly promoting loss of kidney function. To understand the role of microRNA (miRNA) in the progression of kidney scarring in response to injury, we investigated changes in miRNA expression in two kidney fibrosis models and identified 24 commonly up-regulated miRNAs. Among them, miR-21 was highly elevated in both animal models and in human transplanted kidneys with nephropathy. Deletion of miR-21 in mice resulted in no overt abnormality. However, miR-21 −/− mice suffered far less interstitial fibrosis in response to kidney injury, a phenotype duplicated in wild-type mice treated with anti–miR-21 oligonucleotides. Global derepression of miR-21 target mRNAs was readily detectable in miR-21 −/− kidneys after injury. Analysis of gene expression profiles up-regulated in the absence of miR-21 identified groups of genes involved in metabolic pathways, including the lipid metabolism pathway regulated by peroxisome proliferator–activated receptor-α (Pparα), a direct miR-21 target. Overexpression of Pparα prevented ureteral obstruction–induced injury and fibrosis. Pparα deficiency abrogated the antifibrotic effect of anti–miR-21 oligonucleotides. miR-21 also regulated the redox metabolic pathway. The mitochondrial inhibitor of reactive oxygen species generation Mpv17l was repressed by miR-21, correlating closely with enhanced oxidative kidney damage. These studies demonstrate that miR-21 contributes to fibrogenesis and epithelial injury in the kidney in two mouse models and is a candidate target for antifibrotic therapies.

Journal ArticleDOI
TL;DR: It is suggested that changes in the sleep-wake cycle may be caused by Aβ accumulation, andSleep-wake behavior and diurnal fluctuation of Aβ in the central nervous system may be functional and biochemical indicators, respectively, of A β-associated pathology.
Abstract: Aggregation of β-amyloid (Aβ) in the brain begins to occur years before the clinical onset of Alzheimer's disease (AD). Before Aβ aggregation, concentrations of extracellular soluble Aβ in the interstitial fluid (ISF) space of the brain, which are regulated by neuronal activity and the sleep-wake cycle, correlate with the amount of Aβ deposition in the brain seen later. The amount and quality of sleep decline with normal aging and to a greater extent in AD patients. How sleep quality as well as the diurnal fluctuation in Aβ change with age and Aβ aggregation is not well understood. We report a normal sleep-wake cycle and diurnal fluctuation in ISF Aβ in the brain of the APPswe/PS1δE9 mouse model of AD before Aβ plaque formation. After plaque formation, the sleep-wake cycle markedly deteriorated and diurnal fluctuation of ISF Aβ dissipated. As in mice, diurnal fluctuation of cerebrospinal fluid Aβ in young adult humans with presenilin mutations was also markedly attenuated after Aβ plaque formation. Virtual elimination of Aβ deposits in the mouse brain by active immunization with Aβ(42) normalized the sleep-wake cycle and the diurnal fluctuation of ISF Aβ. These data suggest that Aβ aggregation disrupts the sleep-wake cycle and diurnal fluctuation of Aβ. Sleep-wake behavior and diurnal fluctuation of Aβ in the central nervous system may be functional and biochemical indicators, respectively, of Aβ-associated pathology.

Journal ArticleDOI
TL;DR: Analysis of mitochondrial responses in iPSC-derived neural cells from PD patients carrying different mutations provides insight into convergence of cellular disease mechanisms between different familial forms of PD and highlights the importance of oxidative stress and mitochondrial dysfunction in this neurodegenerative disease.
Abstract: Parkinson’s disease (PD) is a common neurodegenerative disorder caused by genetic and environmental factors that results in degeneration of the nigrostriatal dopaminergic pathway in the brain. We analyzed neural cells generated from induced pluripotent stem cells (iPSCs) derived from PD patients and presymptomatic individuals carrying mutations in the PINK1 (PTEN-induced putative kinase 1 )a ndLRRK2 (leucine-rich repeat kinase 2) genes, and compared them to those of healthy control subjects. We measured several aspects of mitochondrial responses in the iPSC-derived neural cells including production of reactive oxygen species, mitochondrial respiration, proton leakage, and intraneuronal movement of mitochondria. Cellular vulnerability associated with mitochondrial dysfunction in iPSC-derived neural cells from familial PD patients and at-risk individuals could be rescued with coenzyme Q10, rapamycin, or the LRRK2 kinase inhibitor GW5074. Analysis of mitochondrial responses in iPSCderived neural cells from PD patients carrying different mutations provides insight into convergence of cellular disease mechanisms between different familial forms of PD and highlights the importance of oxidative stress and mitochondrial dysfunction in this neurodegenerative disease.

Journal ArticleDOI
TL;DR: The current state of prostate cancer biomarker research, including the PSA revolution, its impact on early cancer detection, the recent advances in biomarker discovery, and the future efforts that promise to improve clinical management of this disease are reviewed.
Abstract: Since the introduction of serum prostate-specific antigen (PSA) screening 25 years ago, prostate cancer diagnosis and management have been guided by this biomarker. Yet, PSA has proven controversial as a screening assay owing to several inherent limitations. The next wave of prostate cancer biomarkers has emerged, introducing new assays in serum and urine that may supplement or, in time, replace PSA because of their higher cancer specificity. This expanding universe of biomarkers has been facilitated, in large part, by new genomic technologies that have enabled an unbiased look at cancer biology. Such efforts have produced several notable success stories that involve rapidly moving biomarkers from the bench to the clinic. However, biomarker research has centered on disease diagnostics, rather than prognosis and prediction, which would address disease management. The development of biomarkers to stratify risk of prostate cancer aggressiveness at the time of screening remains the greatest unmet clinical need in prostate cancer. We review the current state of prostate cancer biomarker research, including the PSA revolution, its impact on early cancer detection, the recent advances in biomarker discovery, and the future efforts that promise to improve clinical management of this disease.

Journal ArticleDOI
TL;DR: target NGS in 42 unrelated infants with clinical and biochemical evidence of mitochondrial oxidative phosphorylation disease suggests that next-generation sequencing may be able to provide a molecular diagnosis for ~25% of currently unsolved cases of infantile mitochondrial disease.
Abstract: Advances in next-generation sequencing (NGS) promise to facilitate diagnosis of inherited disorders. Although in research settings NGS has pinpointed causal alleles using segregation in large families, the key challenge for clinical diagnosis is application to single individuals. To explore its diagnostic use, we performed targeted NGS in 42 unrelated infants with clinical and biochemical evidence of mitochondrial oxidative phosphorylation disease. These devastating mitochondrial disorders are characterized by phenotypic and genetic heterogeneity, with more than 100 causal genes identified to date. We performed "MitoExome" sequencing of the mitochondrial DNA (mtDNA) and exons of ~1000 nuclear genes encoding mitochondrial proteins and prioritized rare mutations predicted to disrupt function. Because patients and healthy control individuals harbored a comparable number of such heterozygous alleles, we could not prioritize dominant-acting genes. However, patients showed a fivefold enrichment of genes with two such mutations that could underlie recessive disease. In total, 23 of 42 (55%) patients harbored such recessive genes or pathogenic mtDNA variants. Firm diagnoses were enabled in 10 patients (24%) who had mutations in genes previously linked to disease. Thirteen patients (31%) had mutations in nuclear genes not previously linked to disease. The pathogenicity of two such genes, NDUFB3 and AGK, was supported by complementation studies and evidence from multiple patients, respectively. The results underscore the potential and challenges of deploying NGS in clinical settings.

Journal ArticleDOI
TL;DR: Mixed chimerism and tolerance without the negative side effects of GVHD or engraftment syndrome is reported in a phase 2 clinical trial of combined kidney and hematopoietic transplantation and is suggested to free some patients from the difficulties associated with lifelong immunosuppression and add transplantation as a viable option for patients for whom no matched donors exist.
Abstract: The toxicity of chronic immunosuppressive agents required for organ transplant maintenance has prompted investigators to pursue approaches to induce immune tolerance. We developed an approach using a bioengineered mobilized cellular product enriched for hematopoietic stem cells (HSCs) and tolerogenic graft facilitating cells (FCs) combined with nonmyeloablative conditioning; this approach resulted in engraftment, durable chimerism, and tolerance induction in recipients with highly mismatched related and unrelated donors. Eight recipients of human leukocyte antigen (HLA)-mismatched kidney and FC/HSC transplants underwent conditioning with fludarabine, 200-centigray total body irradiation, and cyclophosphamide followed by posttransplant immunosuppression with tacrolimus and mycophenolate mofetil. Subjects ranged in age from 29 to 56 years. HLA match ranged from five of six loci with related donors to one of six loci with unrelated donors. The absolute neutrophil counts reached a nadir about 1 week after transplant, with recovery by 2 weeks. Multilineage chimerism at 1 month ranged from 6 to 100%. The conditioning was well tolerated, with outpatient management after postoperative day 2. Two subjects exhibited transient chimerism and were maintained on low-dose tacrolimus monotherapy. One subject developed viral sepsis 2 months after transplant and experienced renal artery thrombosis. Five subjects experienced durable chimerism, demonstrated immunocompetence and donor-specific tolerance by in vitro proliferative assays, and were successfully weaned off all immunosuppression 1 year after transplant. None of the recipients produced anti-donor antibody or exhibited engraftment syndrome or graft-versus-host disease. These results suggest that manipulation of a mobilized stem cell graft and nonmyeloablative conditioning represents a safe, practical, and reproducible means of inducing durable chimerism and donor-specific tolerance in solid organ transplant recipients.