scispace - formally typeset
Open AccessJournal ArticleDOI

Anthropogenic warming has increased drought risk in California

Reads0
Chats0
TLDR
This paper found that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm and that anthropogenic warming is increasing the probability of co-occurring warm-dry conditions like those that have created the acute human and ecosystem impacts associated with the 2012-2014 drought in California.
Abstract
California is currently in the midst of a record-setting drought. The drought began in 2012 and now includes the lowest calendar-year and 12-mo precipitation, the highest annual temperature, and the most extreme drought indicators on record. The extremely warm and dry conditions have led to acute water shortages, groundwater overdraft, critically low streamflow, and enhanced wildfire risk. Analyzing historical climate observations from California, we find that precipitation deficits in California were more than twice as likely to yield drought years if they occurred when conditions were warm. We find that although there has not been a substantial change in the probability of either negative or moderately negative precipitation anomalies in recent decades, the occurrence of drought years has been greater in the past two decades than in the preceding century. In addition, the probability that precipitation deficits co-occur with warm conditions and the probability that precipitation deficits produce drought have both increased. Climate model experiments with and without anthropogenic forcings reveal that human activities have increased the probability that dry precipitation years are also warm. Further, a large ensemble of climate model realizations reveals that additional global warming over the next few decades is very likely to create ∼100% probability that any annual-scale dry period is also extremely warm. We therefore conclude that anthropogenic warming is increasing the probability of co-occurring warm–dry conditions like those that have created the acute human and ecosystem impacts associated with the “exceptional” 2012–2014 drought in California.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

On underestimation of global vulnerability to tree mortality and forest die‐off from hotter drought in the Anthropocene

TL;DR: In this article, the authors identify ten contrasting perspectives that shape the vulnerability debate but have not been discussed collectively and present a set of global vulnerability drivers that are known with high confidence: (1) droughts eventually occur everywhere; (2) warming produces hotter Droughts; (3) atmospheric moisture demand increases nonlinearly with temperature during drought; (4) mortality can occur faster in hotter Drought, consistent with fundamental physiology; (5) shorter Drought can become lethal under warming, increasing the frequency of lethal Drought; and (6) mortality happens rapidly
Journal ArticleDOI

Temperate forest health in an era of emerging megadisturbance.

TL;DR: Although continuing climate change will likely drive many areas of temperate forest toward large-scale transformations, management actions can help ease transitions and minimize losses of socially valued ecosystem services.
Journal ArticleDOI

Attribution of climate extreme events

TL;DR: The authors suggest that it is more useful to regard the extreme circulation regime or weather event as being largely unaffected by climate change, and question whether known changes in the climate system's thermodynamic state affected the impact of a particular event.
Journal ArticleDOI

Increasing precipitation volatility in twenty-first-century California

TL;DR: This article investigated future changes in dry-to-wet events using the Community Earth System Model Large Ensemble of climate model simulations and found that anthropogenic forcing yields large twenty-first-century increases in the frequency of wet extremes, including a more than threefold increase in sub-seasonal events comparable to California's 'Great Flood of 1862' and small but statistically robust increases in dry extremes are also apparent.
Journal ArticleDOI

Spinel ferrite magnetic adsorbents: Alternative future materials for water purification?

TL;DR: Spinel ferrite (SF) magnetic materials are an important class of composite metal oxides containing ferric ions and having the general structural formula M 2+ Fe 2 3+ O 4.
References
More filters
Journal ArticleDOI

Biodiversity hotspots for conservation priorities

TL;DR: A ‘silver bullet’ strategy on the part of conservation planners, focusing on ‘biodiversity hotspots’ where exceptional concentrations of endemic species are undergoing exceptional loss of habitat, is proposed.
Journal ArticleDOI

An Overview of CMIP5 and the Experiment Design

TL;DR: The fifth phase of the Coupled Model Intercomparison Project (CMIP5) will produce a state-of-the- art multimodel dataset designed to advance the authors' knowledge of climate variability and climate change.
Journal ArticleDOI

Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity

TL;DR: It is shown that large wildfire activity increased suddenly and markedly in the mid-1980s, with higher large-wildfire frequency, longer wildfire durations, and longer wildfire seasons.
Journal ArticleDOI

Increasing drought under global warming in observations and models

TL;DR: In this paper, the authors look at observations and model projections from 1923 to 2010, to test the ability of models to predict future drought conditions, which inspires confidence in their projections of drought.
Journal ArticleDOI

Drought under global warming: a review

TL;DR: Wiley et al. as mentioned in this paper reviewed recent literature on the last millennium, followed by an update on global aridity changes from 1950 to 2008, and presented future aridity is presented based on recent studies and their analysis of model simulations.
Related Papers (5)