scispace - formally typeset
Search or ask a question

Showing papers in "Nature Climate Change in 2018"


Journal ArticleDOI
TL;DR: In this article, a better understanding of compound events may improve projections of potential high-impact events, and can provide a bridge between climate scientists, engineers, social scientists, impact modellers and decision-makers.
Abstract: Floods, wildfires, heatwaves and droughts often result from a combination of interacting physical processes across multiple spatial and temporal scales. The combination of processes (climate drivers and hazards) leading to a significant impact is referred to as a ‘compound event’. Traditional risk assessment methods typically only consider one driver and/or hazard at a time, potentially leading to underestimation of risk, as the processes that cause extreme events often interact and are spatially and/or temporally dependent. Here we show how a better understanding of compound events may improve projections of potential high-impact events, and can provide a bridge between climate scientists, engineers, social scientists, impact modellers and decision-makers, who need to work closely together to understand these complex events.

960 citations


Journal ArticleDOI
TL;DR: In this article, the authors quantify tourism-related global carbon flows between 160 countries, and their carbon footprints under origin and destination accounting perspectives, and find that, between 2009 and 2013, tourism's global carbon footprint has increased from 3.9 to 4.5 CO2e, four times more than previously estimated, accounting for about 8% of global greenhouse gas emissions.
Abstract: Tourism contributes significantly to global gross domestic product, and is forecast to grow at an annual 4%, thus outpacing many other economic sectors. However, global carbon emissions related to tourism are currently not well quantified. Here, we quantify tourism-related global carbon flows between 160 countries, and their carbon footprints under origin and destination accounting perspectives. We find that, between 2009 and 2013, tourism’s global carbon footprint has increased from 3.9 to 4.5 GtCO2e, four times more than previously estimated, accounting for about 8% of global greenhouse gas emissions. Transport, shopping and food are significant contributors. The majority of this footprint is exerted by and in high-income countries. The rapid increase in tourism demand is effectively outstripping the decarbonization of tourism-related technology. We project that, due to its high carbon intensity and continuing growth, tourism will constitute a growing part of the world’s greenhouse gas emissions. Tourism is a significant contributor to the global economy, with potentially large environmental impacts. Origin and destination accounting perspectives are used to provide a comprehensive assessment of global tourism’s carbon footprint.

737 citations


Journal ArticleDOI
TL;DR: In this paper, the authors describe scenarios that limit end-of-century radiative forcing to 1.9 Wm−2, and consequently restrict median warming in the year 2100 to below 1.5 W m−2.
Abstract: The 2015 Paris Agreement calls for countries to pursue efforts to limit global-mean temperature rise to 1.5 °C. The transition pathways that can meet such a target have not, however, been extensively explored. Here we describe scenarios that limit end-of-century radiative forcing to 1.9 W m−2, and consequently restrict median warming in the year 2100 to below 1.5 °C. We use six integrated assessment models and a simple climate model, under different socio-economic, technological and resource assumptions from five Shared Socio-economic Pathways (SSPs). Some, but not all, SSPs are amenable to pathways to 1.5 °C. Successful 1.9 W m−2 scenarios are characterized by a rapid shift away from traditional fossil-fuel use towards large-scale low-carbon energy supplies, reduced energy use, and carbon-dioxide removal. However, 1.9 W m−2 scenarios could not be achieved in several models under SSPs with strong inequalities, high baseline fossil-fuel use, or scattered short-term climate policy. Further research can help policy-makers to understand the real-world implications of these scenarios.

733 citations


Journal ArticleDOI
TL;DR: In this paper, a dedicated effort to synthesize existing scientific knowledge across disciplines is underway and aims to provide a better understanding of the combined risks posed in the Mediterranean Basin, where fewer systematic observations schemes and impact models are based.
Abstract: Recent accelerated climate change has exacerbated existing environmental problems in the Mediterranean Basin that are caused by the combination of changes in land use, increasing pollution and declining biodiversity. For five broad and interconnected impact domains (water, ecosystems, food, health and security), current change and future scenarios consistently point to significant and increasing risks during the coming decades. Policies for the sustainable development of Mediterranean countries need to mitigate these risks and consider adaptation options, but currently lack adequate information — particularly for the most vulnerable southern Mediterranean societies, where fewer systematic observations schemes and impact models are based. A dedicated effort to synthesize existing scientific knowledge across disciplines is underway and aims to provide a better understanding of the combined risks posed.

699 citations


Journal ArticleDOI
TL;DR: In this article, the authors compute global glacier runoff changes for 56 large-scale glacierized drainage basins to 2100 and analyse the glacial impact on streamflow, concluding that the downstream hydrological effects of continued glacier wastage can be substantial, but the magnitudes vary greatly among basins and throughout the melt season.
Abstract: Worldwide glacier retreat and associated future runoff changes raise major concerns over the sustainability of global water resources1–4, but global-scale assessments of glacier decline and the resulting hydrological consequences are scarce5,6. Here we compute global glacier runoff changes for 56 large-scale glacierized drainage basins to 2100 and analyse the glacial impact on streamflow. In roughly half of the investigated basins, the modelled annual glacier runoff continues to rise until a maximum (‘peak water’) is reached, beyond which runoff steadily declines. In the remaining basins, this tipping point has already been passed. Peak water occurs later in basins with larger glaciers and higher ice-cover fractions. Typically, future glacier runoff increases in early summer but decreases in late summer. Although most of the 56 basins have less than 2% ice coverage, by 2100 one-third of them might experience runoff decreases greater than 10% due to glacier mass loss in at least one month of the melt season, with the largest reductions in central Asia and the Andes. We conclude that, even in large-scale basins with minimal ice-cover fraction, the downstream hydrological effects of continued glacier wastage can be substantial, but the magnitudes vary greatly among basins and throughout the melt season.

610 citations


Journal ArticleDOI
TL;DR: This article investigated future changes in dry-to-wet events using the Community Earth System Model Large Ensemble of climate model simulations and found that anthropogenic forcing yields large twenty-first-century increases in the frequency of wet extremes, including a more than threefold increase in sub-seasonal events comparable to California's 'Great Flood of 1862' and small but statistically robust increases in dry extremes are also apparent.
Abstract: Mediterranean climate regimes are particularly susceptible to rapid shifts between drought and flood—of which, California’s rapid transition from record multi-year dryness between 2012 and 2016 to extreme wetness during the 2016–2017 winter provides a dramatic example. Projected future changes in such dry-to-wet events, however, remain inadequately quantified, which we investigate here using the Community Earth System Model Large Ensemble of climate model simulations. Anthropogenic forcing is found to yield large twenty-first-century increases in the frequency of wet extremes, including a more than threefold increase in sub-seasonal events comparable to California’s ‘Great Flood of 1862’. Smaller but statistically robust increases in dry extremes are also apparent. As a consequence, a 25% to 100% increase in extreme dry-to-wet precipitation events is projected, despite only modest changes in mean precipitation. Such hydrological cycle intensification would seriously challenge California’s existing water storage, conveyance and flood control infrastructure.

529 citations


Journal ArticleDOI
TL;DR: The authors argue that ecological grief is a natural and legitimate response to ecological loss, and one that may become more common as climate impacts worsen, and offer future research directions for the study of ecological grief.
Abstract: Climate change is increasingly understood to impact mental health through multiple pathways of risk, including intense feelings of grief as people suffer climate-related losses to valued species, ecosystems and landscapes. Despite growing research interest, ecologically driven grief, or ‘ecological grief’, remains an underdeveloped area of inquiry. We argue that grief is a natural and legitimate response to ecological loss, and one that may become more common as climate impacts worsen. Drawing upon our own research in Northern Canada and the Australian Wheatbelt, combined with a synthesis of the literature, we offer future research directions for the study of ecological grief. Climate change has a gradual influence on landscapes and ecosystems that may lead to feelings of loss for those with close ties to the natural environment. This Perspective describes existing research on ecological grief and outlines directions for future inquiry.

496 citations


Journal ArticleDOI
TL;DR: In this article, the authors estimate country-level contributions to the social cost of carbon using recent climate model projections, empirical climate-driven economic damage estimations and socio-economic projections.
Abstract: The social cost of carbon (SCC) is a commonly employed metric of the expected economic damages from carbon dioxide (CO2) emissions Although useful in an optimal policy context, a world-level approach obscures the heterogeneous geography of climate damage and vast differences in country-level contributions to the global SCC, as well as climate and socio-economic uncertainties, which are larger at the regional level Here we estimate country-level contributions to the SCC using recent climate model projections, empirical climate-driven economic damage estimations and socio-economic projections Central specifications show high global SCC values (median, US$417 per tonne of CO2 (tCO2); 66% confidence intervals, US$177–805 per tCO2) and a country-level SCC that is unequally distributed However, the relative ranking of countries is robust to different specifications: countries that incur large fractions of the global cost consistently include India, China, Saudi Arabia and the United States Global estimates of the economic impacts of CO2 emissions may obscure regional heterogeneities A modular framework for estimating the country-level social cost of carbon shows consistently unequal country-level costs

473 citations


Journal ArticleDOI
TL;DR: In this article, the authors explore the impact of alternative pathways that include lifestyle change, additional reduction of non-CO2 greenhouse gases and more rapid electrification of energy demand based on renewable energy.
Abstract: Mitigation scenarios that achieve the ambitious targets included in the Paris Agreement typically rely on greenhouse gas emission reductions combined with net carbon dioxide removal (CDR) from the atmosphere, mostly accomplished through large-scale application of bioenergy with carbon capture and storage, and afforestation. However, CDR strategies face several difficulties such as reliance on underground CO2 storage and competition for land with food production and biodiversity protection. The question arises whether alternative deep mitigation pathways exist. Here, using an integrated assessment model, we explore the impact of alternative pathways that include lifestyle change, additional reduction of non-CO2 greenhouse gases and more rapid electrification of energy demand based on renewable energy. Although these alternatives also face specific difficulties, they are found to significantly reduce the need for CDR, but not fully eliminate it. The alternatives offer a means to diversify transition pathways to meet the Paris Agreement targets, while simultaneously benefiting other sustainability goals.

443 citations


Journal ArticleDOI
TL;DR: In this article, a transdisciplinary approach is proposed to identify demand-side climate solutions, investigate their mitigation potential, detail policy measures and assess their implications for well-being, and propose a trans-disciplinary approach to identify and analyse demand side climate solutions.
Abstract: Research on climate change mitigation tends to focus on supply-side technology solutions A better understanding of demand-side solutions is missing We propose a transdisciplinary approach to identify demand-side climate solutions, investigate their mitigation potential, detail policy measures and assess their implications for well-being

441 citations


Journal ArticleDOI
TL;DR: In this article, the authors propose an approach to build adaptive capacity across five domains: the assets that people can draw upon in times of need; the flexibility to change strategies; the ability to organize and act collectively; learning to recognize and respond to change; and the agency to determine whether to change or not.
Abstract: To minimize the impacts of climate change on human wellbeing, governments, development agencies, and civil society organizations have made substantial investments in improving people's capacity to adapt to change Yet to date, these investments have tended to focus on a very narrow understanding of adaptive capacity Here, we propose an approach to build adaptive capacity across five domains: the assets that people can draw upon in times of need; the flexibility to change strategies; the ability to organize and act collectively; learning to recognize and respond to change; and the agency to determine whether to change or not

Journal ArticleDOI
TL;DR: In this article, an ensemble of hydrological and land-surface models, forced with bias-corrected downscaled general circulation model output, was used to estimate the impacts of 1-3'k global mean temperature increases on soil moisture droughts in Europe.
Abstract: Anthropogenic warming is anticipated to increase soil moisture drought in the future. However, projections are accompanied by large uncertainty due to varying estimates of future warming. Here, using an ensemble of hydrological and land-surface models, forced with bias-corrected downscaled general circulation model output, we estimate the impacts of 1–3 K global mean temperature increases on soil moisture droughts in Europe. Compared to the 1.5 K Paris target, an increase of 3 K—which represents current projected temperature change—is found to increase drought area by 40% (±24%), affecting up to 42% (±22%) more of the population. Furthermore, an event similar to the 2003 drought is shown to become twice as frequent; thus, due to their increased occurrence, events of this magnitude will no longer be classified as extreme. In the absence of effective mitigation, Europe will therefore face unprecedented increases in soil moisture drought, presenting new challenges for adaptation across the continent. Severe drought plagued Europe in 2003, amplifying heatwave conditions that killed more than 30,000 people. Assuming business as usual, such soil moisture deficits will become twice as frequent in the future and affect up to two-thirds of the European population.

Journal ArticleDOI
TL;DR: In this article, the authors synthesize findings regarding the optimal use of carbon revenues from both traditional economic analyses and studies in behavioural and political science that are focused on public acceptability, and compare real-world carbon pricing regimes with theoretical insights on distributional fairness, revenue salience, political trust and policy stability.
Abstract: The gap between actual carbon prices and those required to achieve ambitious climate change mitigation could be closed by enhancing the public acceptability of carbon pricing through appropriate use of the revenues raised. In this Perspective, we synthesize findings regarding the optimal use of carbon revenues from both traditional economic analyses and studies in behavioural and political science that are focused on public acceptability. We then compare real-world carbon pricing regimes with theoretical insights on distributional fairness, revenue salience, political trust and policy stability. We argue that traditional economic lessons on efficiency and equity are subsidiary to the primary challenge of garnering greater political acceptability and make recommendations for enhancing political support through appropriate revenue uses in different economic and political circumstances. Ambitious carbon pricing reform is needed to meet climate targets. This Perspective argues that effective revenue recycling schemes should prioritize behavioural considerations that are aimed at achieving greater political acceptance.

Journal ArticleDOI
TL;DR: In this article, a multi-model framework was used to estimate human losses, direct economic damage and subsequent indirect impacts (welfare losses) under a range of temperature (1.5°C, 2°C and 3°C warming) and socio-economic scenarios, assuming current vulnerability levels and in the absence of future adaptation.
Abstract: River floods are among some of the costliest natural disasters1, but their socio-economic impacts under contrasting warming levels remain little explored2. Here, using a multi-model framework, we estimate human losses, direct economic damage and subsequent indirect impacts (welfare losses) under a range of temperature (1.5 °C, 2 °C and 3 °C warming)3 and socio-economic scenarios, assuming current vulnerability levels and in the absence of future adaptation. With temperature increases of 1.5 °C, depending on the socio-economic scenario, it is found that human losses from flooding could rise by 70–83%, direct flood damage by 160–240%, with a relative welfare reduction between 0.23 and 0.29%. In a 2 °C world, by contrast, the death toll is 50% higher, direct economic damage doubles and welfare losses grow to 0.4%. Impacts are notably higher under 3 C warming, but at the same time, variability between ensemble members also increases, leading to greater uncertainty regarding flood impacts at higher warming levels. Flood impacts are further shown to have an uneven regional distribution, with the greatest losses observed in the Asian continent at all analysed warming levels. It is clear that increased adaptation and mitigation efforts—perhaps through infrastructural investment4—are needed to offset increasing risk of river floods in the future. River floods have severe socio-economic impacts. A multi-model framework reveals river-flood-related human losses may rise by up to 83%, 134% and 265% at 1.5 °C, 2 °C and 3 °C warming, respectively, with economic losses also projected to rise.

Journal ArticleDOI
TL;DR: In this paper, the authors explore the determinants of these residual emissions, focusing on sector-level contributions, and show that even when strengthened pre-2030 mitigation action is combined with very stringent long-term policies, cumulative residual CO2 emissions from fossil fuels remain at 850-1,150 GtCO2 during 2016-2100, despite carbon prices of US$130-420 per tCO2 by 2030.
Abstract: The Paris Agreement—which is aimed at holding global warming well below 2 °C while pursuing efforts to limit it below 1.5 °C—has initiated a bottom-up process of iteratively updating nationally determined contributions to reach these long-term goals. Achieving these goals implies a tight limit on cumulative net CO2 emissions, of which residual CO2 emissions from fossil fuels are the greatest impediment. Here, using an ensemble of seven integrated assessment models (IAMs), we explore the determinants of these residual emissions, focusing on sector-level contributions. Even when strengthened pre-2030 mitigation action is combined with very stringent long-term policies, cumulative residual CO2 emissions from fossil fuels remain at 850–1,150 GtCO2 during 2016–2100, despite carbon prices of US$130–420 per tCO2 by 2030. Thus, 640–950 GtCO2 removal is required for a likely chance of limiting end-of-century warming to 1.5 °C. In the absence of strengthened pre-2030 pledges, long-term CO2 commitments are increased by 160–330 GtCO2, further jeopardizing achievement of the 1.5 °C goal and increasing dependence on CO2 removal.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the link between changing sea-ice import and this Arctic warming hotspot, and showed that a sharp increase in ocean temperature and salinity is apparent from the mid-2000s, which can be linked to a recent decline in sea ice import and a corresponding loss in freshwater, leading to weakened ocean stratification, enhanced vertical mixing and increased upward fluxes of heat and salt that prevent seaice formation and increase ocean heat content.
Abstract: The Arctic has warmed dramatically in recent decades, with greatest temperature increases observed in the northern Barents Sea. The warming signatures are not constrained to the atmosphere, but extend throughout the water column. Here, using a compilation of hydrographic observations from 1970 to 2016, we investigate the link between changing sea-ice import and this Arctic warming hotspot. A sharp increase in ocean temperature and salinity is apparent from the mid-2000s, which we show can be linked to a recent decline in sea-ice import and a corresponding loss in freshwater, leading to weakened ocean stratification, enhanced vertical mixing and increased upward fluxes of heat and salt that prevent sea-ice formation and increase ocean heat content. Thus, the northern Barents Sea may soon complete the transition from a cold and stratified Arctic to a warm and well-mixed Atlantic-dominated climate regime. Such a shift would have unknown consequences for the Barents Sea ecosystem, including ice-associated marine mammals and commercial fish stocks.

Journal ArticleDOI
TL;DR: In this article, traceable evidence for 467 pathways by which human health, water, food, economy, infrastructure and security have been recently impacted by climate hazards such as warming, heatwaves, precipitation, drought, floods, fires, storms, sea-level rise and changes in natural land cover and ocean chemistry.
Abstract: The ongoing emission of greenhouse gases (GHGs) is triggering changes in many climate hazards that can impact humanity. We found traceable evidence for 467 pathways by which human health, water, food, economy, infrastructure and security have been recently impacted by climate hazards such as warming, heatwaves, precipitation, drought, floods, fires, storms, sea-level rise and changes in natural land cover and ocean chemistry. By 2100, the world’s population will be exposed concurrently to the equivalent of the largest magnitude in one of these hazards if emmisions are aggressively reduced, or three if they are not, with some tropical coastal areas facing up to six simultaneous hazards. These findings highlight the fact that GHG emissions pose a broad threat to humanity by intensifying multiple hazards to which humanity is vulnerable.

Journal ArticleDOI
TL;DR: In this paper, the authors show that although initial efforts have inevitably represented human behaviour in limited terms, innovations in flood-risk assessment that integrate societal behaviour and behavioural adaptation dynamics into such quantifications may lead to more accurate characterization of risks and improved assessment of the effectiveness of risk-management strategies and investments.
Abstract: The behaviour of individuals, businesses, and government entities before, during, and immediately after a disaster can dramatically affect the impact and recovery time. However, existing risk-assessment methods rarely include this critical factor. In this Perspective, we show why this is a concern, and demonstrate that although initial efforts have inevitably represented human behaviour in limited terms, innovations in flood-risk assessment that integrate societal behaviour and behavioural adaptation dynamics into such quantifications may lead to more accurate characterization of risks and improved assessment of the effectiveness of risk-management strategies and investments. Such multidisciplinary approaches can inform flood-risk management policy development.

Journal ArticleDOI
TL;DR: The academic and policy debate regarding the role of central banks and financial regulators in addressing climate-related financial risks has rapidly expanded in recent years as mentioned in this paper, where the key controversies and potential research and policy avenues for the future are discussed.
Abstract: The academic and policy debate regarding the role of central banks and financial regulators in addressing climate-related financial risks has rapidly expanded in recent years. This Perspective presents the key controversies and discusses potential research and policy avenues for the future. Developing a comprehensive analytical framework to assess the potential impact of climate change and the low-carbon transition on financial stability seems to be the first crucial challenge. These enhanced risk measures could then be incorporated in setting financial regulations and implementing the policies of central banks.

Journal ArticleDOI
TL;DR: The interaction of gradual climate trends and extreme weather events since the turn of the century has triggered complex and, in some cases, catastrophic ecological responses around the world as discussed by the authors, using Australian examples within a press-pulse framework.
Abstract: The interaction of gradual climate trends and extreme weather events since the turn of the century has triggered complex and, in some cases, catastrophic ecological responses around the world. We illustrate this using Australian examples within a press–pulse framework. Despite the Australian biota being adapted to high natural climate variability, recent combinations of climatic presses and pulses have led to population collapses, loss of relictual communities and shifts into novel ecosystems. These changes have been sudden and unpredictable, and may represent permanent transitions to new ecosystem states without adaptive management interventions. The press–pulse framework helps illuminate biological responses to climate change, grounds debate about suitable management interventions and highlights possible consequences of (non-) intervention.

Journal ArticleDOI
TL;DR: In this article, the authors review current supply chain initiatives, their effectiveness, and the challenges they face, and identify knowledge gaps for complementary public-private policies to increase the effectiveness of supply-chain initiatives that aim to reduce deforestation.
Abstract: A major reduction in global deforestation is needed to mitigate climate change and biodiversity loss Recent private sector commitments aim to eliminate deforestation from a company’s operations or supply chain, but they fall short on several fronts Company pledges vary in the degree to which they include time-bound interventions with clear definitions and criteria to achieve verifiable outcomes Zero-deforestation policies by companies may be insufficient to achieve broader impact on their own due to leakage, lack of transparency and traceability, selective adoption and smallholder marginalization Public–private policy mixes are needed to increase the effectiveness of supply-chain initiatives that aim to reduce deforestation We review current supply-chain initiatives, their effectiveness, and the challenges they face, and go on to identify knowledge gaps for complementary public–private policies

Journal ArticleDOI
TL;DR: It is shown that temperature primarily drives phenological responses at mid-latitudes, with precipitation becoming important at lower latitudes, probably reflecting factors that drive seasonality in each region.
Abstract: Shifts in phenology are already resulting in disruptions to the timing of migration and breeding, and asynchronies between interacting species1–5. Recent syntheses have concluded that trophic level 1 , latitude 6 and how phenological responses are measured 7 are key to determining the strength of phenological responses to climate change. However, researchers still lack a comprehensive framework that can predict responses to climate change globally and across diverse taxa. Here, we synthesize hundreds of published time series of animal phenology from across the planet to show that temperature primarily drives phenological responses at mid-latitudes, with precipitation becoming important at lower latitudes, probably reflecting factors that drive seasonality in each region. Phylogeny and body size are associated with the strength of phenological shifts, suggesting emerging asynchronies between interacting species that differ in body size, such as hosts and parasites and predators and prey. Finally, although there are many compelling biological explanations for spring phenological delays, some examples of delays are associated with short annual records that are prone to sampling error. Our findings arm biologists with predictions concerning which climatic variables and organismal traits drive phenological shifts. A synthesis of animal phenology shows that temperature primarily drives mid-latitude responses, with precipitation important at lower latitudes. Phylogeny and body size are associated with the strength of phenological shifts.

Journal ArticleDOI
TL;DR: In this article, the authors conduct a multiple model assessment on the combined effects of climate change and climate mitigation efforts on agricultural commodity prices, dietary energy availability and the population at risk of hunger.
Abstract: Food insecurity can be directly exacerbated by climate change due to crop-production-related impacts of warmer and drier conditions that are expected in important agricultural regions1–3. However, efforts to mitigate climate change through comprehensive, economy-wide GHG emissions reductions may also negatively affect food security, due to indirect impacts on prices and supplies of key agricultural commodities4–6. Here we conduct a multiple model assessment on the combined effects of climate change and climate mitigation efforts on agricultural commodity prices, dietary energy availability and the population at risk of hunger. A robust finding is that by 2050, stringent climate mitigation policy, if implemented evenly across all sectors and regions, would have a greater negative impact on global hunger and food consumption than the direct impacts of climate change. The negative impacts would be most prevalent in vulnerable, low-income regions such as sub-Saharan Africa and South Asia, where food security problems are already acute.

Journal ArticleDOI
TL;DR: In this paper, the authors estimate that 36% of Shark Bay's seagrass meadows were damaged following a marine heatwave in 2010/2011, potentially releasing 2-9 Tg CO2 in the following years.
Abstract: Seagrass ecosystems contain globally significant organic carbon (C) stocks. However, climate change and increasing frequency of extreme events threaten their preservation. Shark Bay, Western Australia, has the largest C stock reported for a seagrass ecosystem, containing up to 1.3% of the total C stored within the top metre of seagrass sediments worldwide. On the basis of field studies and satellite imagery, we estimate that 36% of Shark Bay’s seagrass meadows were damaged following a marine heatwave in 2010/2011. Assuming that 10 to 50% of the seagrass sediment C stock was exposed to oxic conditions after disturbance, between 2 and 9 Tg CO2 could have been released to the atmosphere during the following three years, increasing emissions from land-use change in Australia by 4–21% per annum. With heatwaves predicted to increase with further climate warming, conservation of seagrass ecosystems is essential to avoid adverse feedbacks on the climate system. Marine ecosystems and their stored carbon are threatened by warming and marine heatwaves. During a 2010–2011 heatwave, around a third of a Western Australian seagrass ecosystem suffered damage, potentially releasing 2–9 Tg CO2 in the following years.

Journal ArticleDOI
TL;DR: This paper found that suicide rates rise 0.7% in US counties and 2.1% in Mexican municipalities for a 1'°C increase in monthly average temperature, indicating limited historical adaptation.
Abstract: Linkages between climate and mental health are often theorized but remain poorly quantified. In particular, it is unknown whether the rate of suicide, a leading cause of death globally, is systematically affected by climatic conditions. Using comprehensive data from multiple decades for both the United States and Mexico, we find that suicide rates rise 0.7% in US counties and 2.1% in Mexican municipalities for a 1 °C increase in monthly average temperature. This effect is similar in hotter versus cooler regions and has not diminished over time, indicating limited historical adaptation. Analysis of depressive language in >600 million social media updates further suggests that mental well-being deteriorates during warmer periods. We project that unmitigated climate change (RCP8.5) could result in a combined 9–40 thousand additional suicides (95% confidence interval) across the United States and Mexico by 2050, representing a change in suicide rates comparable to the estimated impact of economic recessions, suicide prevention programmes or gun restriction laws.

Journal ArticleDOI
TL;DR: In this article, the authors use an integrated global economy-environment simulation model to study the macroeconomic impact of stranded fossil fuel assets (SFFA), and they find that part of the SFFA would occur as a result of an already ongoing technological trajectory, irrespective of whether or not new climate policies are adopted.
Abstract: Several major economies rely heavily on fossil fuel production and exports, yet current low-carbon technology diffusion, energy efficiency and climate policy may be substantially reducing global demand for fossil fuels1–4. This trend is inconsistent with observed investment in new fossil fuel ventures1,2, which could become stranded as a result. Here, we use an integrated global economy–environment simulation model to study the macroeconomic impact of stranded fossil fuel assets (SFFA). Our analysis suggests that part of the SFFA would occur as a result of an already ongoing technological trajectory, irrespective of whether or not new climate policies are adopted; the loss would be amplified if new climate policies to reach the 2 °C target of the Paris Agreement are adopted and/or if low-cost producers (some OPEC countries) maintain their level of production (‘sell out’) despite declining demand; the magnitude of the loss from SFFA may amount to a discounted global wealth loss of US$1–4 trillion; and there are clear distributional impacts, with winners (for example, net importers such as China or the EU) and losers (for example, Russia, the United States or Canada, which could see their fossil fuel industries nearly shut down), although the two effects would largely offset each other at the level of aggregate global GDP.

Journal ArticleDOI
TL;DR: The findings suggest that current forecasts of the burden of antibiotic resistance could be significant underestimates in the face of a growing population and climate change4.
Abstract: Bacteria that cause infections in humans can develop or acquire resistance to antibiotics commonly used against them1,2. Antimicrobial resistance (in bacteria and other microbes) causes significant morbidity worldwide, and some estimates indicate the attributable mortality could reach up to 10 million by 20502–4. Antibiotic resistance in bacteria is believed to develop largely under the selective pressure of antibiotic use; however, other factors may contribute to population level increases in antibiotic resistance1,2. We explored the role of climate (temperature) and additional factors on the distribution of antibiotic resistance across the United States, and here we show that increasing local temperature as well as population density are associated with increasing antibiotic resistance (percent resistant) in common pathogens. We found that an increase in temperature of 10 °C across regions was associated with an increases in antibiotic resistance of 4.2%, 2.2%, and 2.7% for the common pathogens Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus. The associations between temperature and antibiotic resistance in this ecological study are consistent across most classes of antibiotics and pathogens and may be strengthening over time. These findings suggest that current forecasts of the burden of antibiotic resistance could be significant underestimates in the face of a growing population and climate change4. Based on an analysis of the distribution of antibiotic resistance across the United States, research shows that increasing local temperatures as well as population density across regions are associated with increasing antibiotic resistance in common bacterial pathogens.

Journal ArticleDOI
TL;DR: The impact of elevated CO2 concentrations on the sufficiency of dietary intake of iron, zinc and protein for the populations of 151 countries using a model of per-capita food availability stratified by age and sex is analyzed.
Abstract: Atmospheric CO2 is on pace to surpass 550 ppm in the next 30–80 years. Many food crops grown under 550 ppm have protein, iron and zinc contents that are reduced by 3–17% compared with current conditions. We analysed the impact of elevated CO2 concentrations on the sufficiency of dietary intake of iron, zinc and protein for the populations of 151 countries using a model of per-capita food availability stratified by age and sex, assuming constant diets and excluding other climate impacts on food production. We estimate that elevated CO2 could cause an additional 175 million people to be zinc deficient and an additional 122 million people to be protein deficient (assuming 2050 population and CO2 projections). For iron, 1.4 billion women of childbearing age and children under 5 are in countries with greater than 20% anaemia prevalence and would lose >4% of dietary iron. Regions at highest risk—South and Southeast Asia, Africa, and the Middle East—require extra precautions to sustain an already tenuous advance towards improved public health. Elevated atmospheric CO2 (550 ppm) could cause an additional 175 million people to be zinc deficient and 122 million protein deficient (assuming 2050 population and CO2 projections) due to the reduced nutritional value of staple food crops.

Journal ArticleDOI
TL;DR: In this paper, daily rain-on-snow (ROS) flood events with flood-generating potential are simulated over western North America for a historical (2000-2013) and future (forced under Representative Concentration Pathway 8.59) period with the Weather Research and Forecasting model; 4'km resolution allows the basin-scale ROS flood risk to be assessed.
Abstract: Destructive and costly flooding can occur when warm storm systems deposit substantial rain on extensive snowcover1–6, as observed in February 2017 with the Oroville Dam crisis in California7. However, decision-makers lack guidance on how such rain-on-snow (ROS) flood risk may respond to climate change. Here, daily ROS events with flood-generating potential8 are simulated over western North America for a historical (2000–2013) and future (forced under Representative Concentration Pathway 8.59) period with the Weather Research and Forecasting model; 4 km resolution allows the basin-scale ROS flood risk to be assessed. In the warmer climate, we show that ROS becomes less frequent at lower elevations due to snowpack declines, particularly in warmer areas (for example, the Pacific maritime region). By contrast, at higher elevations where seasonal snowcover persists, ROS becomes more frequent due to a shift from snowfall to rain. Accordingly, the water available for runoff10 increases for 55% of western North American river basins, with corresponding increases in flood risk of 20–200%, the greatest changes of which are projected for the Sierra Nevada, the Colorado River headwaters and the Canadian Rocky Mountains. Thus, flood control and water resource planning must consider ROS to fully quantify changes in flood risk with anthropogenic warming.

Journal ArticleDOI
TL;DR: In this article, the authors outline current thinking about climate change and mental health, and discuss crucial limitations in modern epidemiology for examining this issue, and propose a systems approach, complemented by a new style of research thinking and leadership, can help align the needs of this emerging field with existing and research policy agendas.
Abstract: It is increasingly necessary to quantify the impacts of climate change on populations, and to quantify the effectiveness of mitigation and adaptation strategies. Despite growing interest in the health effects of climate change, the relationship between mental health and climate change has received little attention in research or policy. Here, we outline current thinking about climate change and mental health, and discuss crucial limitations in modern epidemiology for examining this issue. A systems approach, complemented by a new style of research thinking and leadership, can help align the needs of this emerging field with existing and research policy agendas.