scispace - formally typeset
Open accessJournal ArticleDOI: 10.1016/J.JLR.2021.100061

Association of serum HDL-cholesterol and apolipoprotein A1 levels with risk of severe SARS-CoV-2 infection.

02 Mar 2021-Journal of Lipid Research (Elsevier)-Vol. 62, pp 100061-100061
Abstract: Individuals with features of metabolic syndrome are particularly susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel coronavirus associated with the severe respiratory disease, coronavirus disease 2019 (COVID-19). Despite considerable attention dedicated to COVID-19, the link between metabolic syndrome and SARS-CoV-2 infection remains unclear. Using data from the UK Biobank, we investigated the relationship between severity of COVID-19 and metabolic syndrome-related serum biomarkers measured prior to SARS-CoV-2 infection. Logistic regression analyses were used to test biomarker levels and biomarker-associated genetic variants with SARS-CoV-2-related outcomes. Among SARS-CoV-2-positive cases and negative controls, a 10 mg/dl increase in serum HDL-cholesterol or apolipoprotein A1 levels was associated with ∼10% reduced risk of SARS-CoV-2 infection, after adjustment for age, sex, obesity, hypertension, type 2 diabetes, and coronary artery disease. Evaluation of known genetic variants for HDL-cholesterol revealed that individuals homozygous for apolipoprotein E4 alleles had ∼2- to 3-fold higher risk of SARS-CoV-2 infection or mortality from COVID-19 compared with apolipoprotein E3 homozygotes, even after adjustment for HDL-cholesterol levels. However, cumulative effects of all evaluated HDL-cholesterol-raising alleles and Mendelian randomization analyses did not reveal association of genetically higher HDL-cholesterol levels with decreased risk of SARS-CoV-2 infection. These results implicate serum HDL-cholesterol and apolipoprotein A1 levels measured prior to SAR-CoV-2 exposure as clinical risk factors for severe COVID-19 infection but do not provide evidence that genetically elevated HDL-cholesterol levels are associated with SAR-CoV-2 infection.

... read more

Topics: Apolipoprotein B (55%), Apolipoprotein A1 (55%), Metabolic syndrome (54%) ... read more
Citations
  More

14 results found


Open accessJournal ArticleDOI: 10.1021/ACS.JPROTEOME.1C00224
Elaine Holmes1, Elaine Holmes2, Julien Wist3, Julien Wist2  +27 moreInstitutions (8)
Abstract: We present a multivariate metabotyping approach to assess the functional recovery of nonhospitalized COVID-19 patients and the possible biochemical sequelae of "Post-Acute COVID-19 Syndrome", colloquially known as long-COVID. Blood samples were taken from patients ca. 3 months after acute COVID-19 infection with further assessment of symptoms at 6 months. Some 57% of the patients had one or more persistent symptoms including respiratory-related symptoms like cough, dyspnea, and rhinorrhea or other nonrespiratory symptoms including chronic fatigue, anosmia, myalgia, or joint pain. Plasma samples were quantitatively analyzed for lipoproteins, glycoproteins, amino acids, biogenic amines, and tryptophan pathway intermediates using Nuclear Magnetic Resonance (NMR) spectroscopy and mass spectrometry. Metabolic data for the follow-up patients (n = 27) were compared with controls (n = 41) and hospitalized severe acute respiratory syndrome SARS-CoV-2 positive patients (n = 18, with multiple time-points). Univariate and multivariate statistics revealed variable patterns of functional recovery with many patients exhibiting residual COVID-19 biomarker signatures. Several parameters were persistently perturbed, e.g., elevated taurine (p = 3.6 × 10-3 versus controls) and reduced glutamine/glutamate ratio (p = 6.95 × 10-8 versus controls), indicative of possible liver and muscle damage and a high energy demand linked to more generalized tissue repair or immune function. Some parameters showed near-complete normalization, e.g., the plasma apolipoprotein B100/A1 ratio was similar to that of healthy controls but significantly lower (p = 4.2 × 10-3) than post-acute COVID-19 patients, reflecting partial reversion of the metabolic phenotype (phenoreversion) toward the healthy metabolic state. Plasma neopterin was normalized in all follow-up patients, indicative of a reduction in the adaptive immune activity that has been previously detected in active SARS-CoV-2 infection. Other systemic inflammatory biomarkers such as GlycA and the kynurenine/tryptophan ratio remained elevated in some, but not all, patients. Correlation analysis, principal component analysis (PCA), and orthogonal-partial least-squares discriminant analysis (O-PLS-DA) showed that the follow-up patients were, as a group, metabolically distinct from controls and partially comapped with the acute-phase patients. Significant systematic metabolic differences between asymptomatic and symptomatic follow-up patients were also observed for multiple metabolites. The overall metabolic variance of the symptomatic patients was significantly greater than that of nonsymptomatic patients for multiple parameters (χ2 p = 0.014). Thus, asymptomatic follow-up patients including those with post-acute COVID-19 Syndrome displayed a spectrum of multiple persistent biochemical pathophysiology, suggesting that the metabolic phenotyping approach may be deployed for multisystem functional assessment of individual post-acute COVID-19 patients.

... read more

Topics: Asymptomatic (54%), myalgia (53%)

10 Citations


Open accessJournal ArticleDOI: 10.1016/J.JLR.2021.100067
Kenneth R. Feingold1Institutions (1)

4 Citations


Open accessJournal ArticleDOI: 10.3390/IJMS22147582
Abstract: The COVID-19 pandemic examines not only the state of actual health care but also the state of fundamental medicine in various countries. Pro-inflammatory processes extend far beyond the classical concepts of inflammation. They manifest themselves in a variety of ways, beginning with extreme physiology, then allostasis at low-grade inflammation, and finally the shockogenic phenomenon of "inflammatory systemic microcirculation". The pathogenetic core of critical situations, including COVID-19, is this phenomenon. Microcirculatory abnormalities, on the other hand, lie at the heart of a specific type of general pathological process known as systemic inflammation (SI). Systemic inflammatory response, cytokine release, cytokine storm, and thrombo-inflammatory syndrome are all terms that refer to different aspects of SI. As a result, the metabolic syndrome model does not adequately reflect the pathophysiology of persistent low-grade systemic inflammation (ChSLGI). Diseases associated with ChSLGI, on the other hand, are risk factors for a severe COVID-19 course. The review examines the role of hypoxia, metabolic dysfunction, scavenger receptors, and pattern-recognition receptors, as well as the processes of the hemophagocytic syndrome, in the systemic alteration and development of SI in COVID-19.

... read more

Topics: Systemic inflammation (55%), Cytokine storm (51%)

1 Citations


Open accessJournal ArticleDOI: 10.3389/FMED.2021.585851
Mengmeng Zhao1, Zhen Luo1, Hua He1, Bo Shen1  +8 moreInstitutions (1)
Abstract: Coronavirus disease 2019 (COVID-19) has become a global public health crisis. Reduced low-density lipoprotein cholesterol (LDL-C) levels were observed in COVID-19 patients. The present study aimed to explore the relationship between LDL-C levels and the prognosis of severe and critical COVID-19 patients. A total of 211 severe and critical COVID-19 patients were enrolled and divided into four groups according to the LDL-C levels, including 53 patients in Group A (LDL-C ≥ 2.71 mmol/L), 53 patients in Group B (2.28 ≤ LDL-C < 2.71 mmol/L), 53 patients in Group C (1.83 ≤ LDL-C < 2.28 mmol/L) and 52 patients in Group D (LDL-C < 1.83 mmol/L). LDL-C levels were lower in critically ill patients than in severe patients. The main symptoms before admission, characteristics on admission and comorbidities of enrolled patients did not differ among the four groups. Compared with patients with high LDL-C levels, patients with low LDL-C levels were more likely to have immune and inflammation dysfunction, renal dysfunction, liver dysfunction and cardiac dysfunction on admission. The proportions of patients with shock and acute cardiac injury, of those admitted to intensive care unit (ICU) and of those treated with mechanical ventilation were inversely related to LDL-C level. The mortality of COVID-19 patients increased with LDL-C reduction. Serum LDL-C levels of COVID-19 patients was negatively correlated with CRP level, but positively correlated with lymphocyte count, as shown by Pearson correlation analysis. Proportional hazard models showed that low LDL-C levels were associated with increased risk of hospitalization death, cardiac injury and admission to the ICU. Taken together, these results suggest that decreased LDL-C levels indicate poor prognosis of severe and critical COVID-19 patients.

... read more

1 Citations


Open accessJournal ArticleDOI: 10.3389/FPHAR.2021.720283
Guyi Wang1, Jiayi Deng1, Jinxiu Li1, Chenfang Wu1  +3 moreInstitutions (1)
Abstract: The current Coronavirus disease 2019 (COVID-19) pandemic has become a global challenge. Managing a large number of acutely ill patients in a short time, whilst reducing the fatality rate and dealing with complications, brings unique difficulties. The most striking pathophysiological features of patients with severe COVID-19 are dysregulated immune responses and abnormal coagulation function, which can result in multiple-organ failure and death. Normally metabolized high-density lipoprotein (HDL) performs several functions, including reverse cholesterol transport, direct binding to lipopolysaccharide (LPS) to neutralize LPS activity, regulation of inflammatory response, anti-thrombotic effects, antioxidant, and anti-apoptotic properties. Clinical data shows that significantly decreased HDL levels in patients with COVID-19 are correlated with both disease severity and mortality. However, the role of HDL in COVID-19 and its specific mechanism remain unclear. In this analysis, we review current evidence mainly in the following areas: firstly, the pathophysiological characteristics of COVID-19, secondly, the pleiotropic properties of HDL, thirdly, the changes and clinical significance of HDL in COVID-19, and fourthly the prospect of HDL-targeting therapy in COVID-19 to clarify the role of HDL in the pathogenesis of COVID-19 and discuss the potential of HDL therapy in COVID-19.

... read more


References
  More

58 results found


Open accessJournal ArticleDOI: 10.1056/NEJMOA2002032
Wei-jie Guan1, Zhengyi Ni1, Yu Hu1, Wenhua Liang1  +33 moreInstitutions (1)
Abstract: Background Since December 2019, when coronavirus disease 2019 (Covid-19) emerged in Wuhan city and rapidly spread throughout China, data have been needed on the clinical characteristics of...

... read more

16,855 Citations


Open accessJournal ArticleDOI: 10.1056/NEJMOA2001017
Na Zhu1, Dingyu Zhang, Wenling Wang1, Xingwang Li2  +15 moreInstitutions (3)
Abstract: In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.).

... read more

Topics: Coronavirus (57%), Betacoronavirus (56%)

15,285 Citations


Journal ArticleDOI: 10.1126/SCIENCE.8346443
13 Aug 1993-Science
Abstract: The apolipoprotein E type 4 allele (APOE-epsilon 4) is genetically associated with the common late onset familial and sporadic forms of Alzheimer9s disease (AD). Risk for AD increased from 20% to 90% and mean age at onset decreased from 84 to 68 years with increasing number of APOE-epsilon 4 alleles in 42 families with late onset AD. Thus APOE-epsilon 4 gene dose is a major risk factor for late onset AD and, in these families, homozygosity for APOE-epsilon 4 was virtually sufficient to cause AD by age 80.

... read more

Topics: Late onset (69%), APOE*4 Allele (56%), SORL1 (54%) ... read more

8,099 Citations


Open accessJournal ArticleDOI: 10.1016/S1473-3099(20)30120-1
Ensheng Dong1, Hongru Du1, Lauren Gardner1Institutions (1)
Abstract: The outbreak of the 2019 novel coronavirus disease (COVID-19) has induced a considerable degree of fear, emotional stress and anxiety among individuals around t

... read more

Topics: Dashboard (business) (62%), Web application (53%)

5,397 Citations


Open accessJournal ArticleDOI: 10.1186/S13742-015-0047-8
25 Feb 2015-GigaScience
Abstract: Background: PLINK 1 is a widely used open-source C/C++ toolset for genome-wide association studies (GWAS) and research in population genetics. However, the steady accumulation of data from imputation and whole-genome sequencing studies has exposed a strong need for faster and scalable implementations of key functions, such as logistic regression, linkage disequilibrium estimation, and genomic distance evaluation. In addition, GWAS and population-genetic data now frequently contain genotype likelihoods, phase information, and/or multiallelic variants, none of which can be represented by PLINK 1’s primary data format. Findings: To address these issues, we are developing a second-generation codebase for PLINK. The first major release from this codebase, PLINK 1.9, introduces extensive use of bit-level parallelism, O √ n -time/constant-space Hardy-Weinberg equilibrium and Fisher’s exact tests, and many other algorithmic improvements. In combination, these changes accelerate most operations by 1-4 orders of magnitude, and allow the program to handle datasets too large to fit in RAM. We have also developed an extension to the data format which adds low-overhead support for genotype likelihoods, phase, multiallelic variants, and reference vs. alternate alleles, which is the basis of our planned second release (PLINK 2.0). Conclusions: The second-generation versions of PLINK will offer dramatic improvements in performance and compatibility. For the first time, users without access to high-end computing resources can perform several essential analyses of the feature-rich and very large genetic datasets coming into use.

... read more

4,519 Citations