scispace - formally typeset
Open AccessJournal ArticleDOI

Born-Oppenheimer breakdown in graphene

TLDR
The Born-Oppenheimer approximation (BO) has proven effective for the accurate determination of chemical reactions, molecular dynamics and phonon frequencies in a wide range of metallic systems as discussed by the authors.
Abstract
The Born-Oppenheimer approximation (BO) has proven effective for the accurate determination of chemical reactions, molecular dynamics and phonon frequencies in a wide range of metallic systems. Graphene, recently discovered in the free state, is a zero band-gap semiconductor, which becomes a metal if the Fermi energy is tuned applying a gate-voltage Vg. Graphene electrons near the Fermi energy have twodimensional massless dispersions, described by Dirac cones. Here we show that a change in Vg induces a stiffening of the Raman G peak (i.e. the zone-center E2g optical phonon), which cannot be described within BO. Indeed, the E2g vibrations cause rigid oscillations of the Dirac-cones in the reciprocal space. If the electrons followed adiabatically the Dirac-cone oscillations, no change in the phonon frequency would be observed. Instead, since the electron-momentum relaxation near the Fermi level is much slower than the phonon motion, the electrons do not follow the Dirac-cone displacements. This invalidates BO and results in the observed phonon stiffening. This spectacular failure of BO is quite significant since BO has been the fundamental paradigm to determine crystal vibrations from the early days of quantum mechanics.

read more

Citations
More filters
Journal ArticleDOI

The electronic properties of graphene

TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Journal ArticleDOI

Superior Thermal Conductivity of Single-Layer Graphene

TL;DR: The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction and establishes graphene as an excellent material for thermal management.
Journal ArticleDOI

Graphene and Graphene Oxide: Synthesis, Properties, and Applications

TL;DR: An overview of the synthesis, properties, and applications of graphene and related materials (primarily, graphite oxide and its colloidal suspensions and materials made from them), from a materials science perspective.
Journal ArticleDOI

Raman spectroscopy of graphene and graphite: Disorder, electron phonon coupling, doping and nonadiabatic effects

TL;DR: In this article, the authors focus on the origin of the D and G peaks and the second order of D peak and show that the G and 2 D Raman peaks change in shape, position and relative intensity with number of graphene layers.
Journal ArticleDOI

Raman spectroscopy as a versatile tool for studying the properties of graphene

TL;DR: The state of the art, future directions and open questions in Raman spectroscopy of graphene are reviewed, and essential physical processes whose importance has only recently been recognized are described.
References
More filters
Journal ArticleDOI

Two-dimensional gas of massless Dirac fermions in graphene

TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Journal ArticleDOI

Raman spectrum of graphene and graphene layers.

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Journal ArticleDOI

Two-dimensional atomic crystals

TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Journal ArticleDOI

Raman Spectrum of Graphite

TL;DR: Raman spectra are reported from single crystals of graphite and other graphite materials as mentioned in this paper, and the Raman intensity of this band is inversely proportional to the crystallite size and is caused by a breakdown of the k-selection rule.
Journal ArticleDOI

Phonons and related crystal properties from density-functional perturbation theory

TL;DR: In this paper, the current status of lattice-dynamical calculations in crystals, using density-functional perturbation theory, with emphasis on the plane-wave pseudopotential method, is reviewed.
Related Papers (5)