scispace - formally typeset
Open AccessJournal ArticleDOI

Cavity-Enhanced Raman Emission from a Single Color Center in a Solid.

Reads0
Chats0
TLDR
The cavity enables an unprecedented frequency tuning range of the Raman emission that significantly exceeds the spectral inhomogeneity of silicon-vacancy centers in diamond nanostructures and selectively suppresses the phonon-induced spontaneous emission that degrades the efficiency of Raman photon generation.
Abstract
We demonstrate cavity-enhanced Raman emission from a single atomic defect in a solid. Our platform is a single silicon-vacancy center in diamond coupled with a monolithic diamond photonic crystal cavity. The cavity enables an unprecedented frequency tuning range of the Raman emission (100 GHz) that significantly exceeds the spectral inhomogeneity of silicon-vacancy centers in diamond nanostructures. We also show that the cavity selectively suppresses the phonon-induced spontaneous emission that degrades the efficiency of Raman photon generation. Our results pave the way towards photon-mediated many-body interactions between solid-state quantum emitters in a nanophotonic platform.

read more

Citations
More filters
Journal Article

Single-Photon Switching and Entanglement of Solid-State Qubits in an Integrated Nanophotonic System

Abstract: Efficient interfaces between photons and quantum emitters form the basis for quantum networks and enable nonlinear optical devices operating at the single-photon level. We demonstrate an integrated platform for scalable quantum nanophotonics based on silicon-vacancy (SiV) color centers coupled to nanoscale diamond devices. By placing SiV centers inside diamond photonic crystal cavities, we realize a quantum-optical switch controlled by a single color center. We control the switch using SiV metastable orbital states and verify optical switching at the single-photon level by using photon correlation measurements. We use Raman transitions to realize a single-photon source with a tunable frequency and bandwidth in a diamond waveguide. Finally, we create entanglement between two SiV centers by detecting indistinguishable Raman photons emitted into a single waveguide. Entanglement is verified using a novel superradiant feature observed in photon correlation measurements, paving the way for the realization of quantum networks.
Journal ArticleDOI

Quantum nanophotonics with group IV defects in diamond.

TL;DR: The progress made in using group IV defect centres, which are anticipated to have practical advantages over the more commonly-used nitrogen vacancy centres, are surveyed.

Reply on H. J. Kimble's comment on "Deterministic single-photon source for distributed quantum networking"

TL;DR: A sequence of single photons is emitted on demand from a single three-level atom strongly coupled to a high-finesse optical cavity, which is essential for quantum communication and networking, and the photons should be appropriate for all-optical quantum information processing.
Journal ArticleDOI

Integrated Quantum Photonics with Silicon Carbide: Challenges and Prospects

TL;DR: In this article, a discussion on how silicon carbide photonics can enable the quantum technologies of the future is presented, and a discussion of how to use photonic materials in quantum computing is presented.
Journal ArticleDOI

Quantum networks based on color centers in diamond

TL;DR: In this paper, a brief overview of state-of-the-art quantum network experiments employing color centers in diamond and discuss future research directions, focusing on the control and coherence of qubits that distribute and store entangled states, and on efficient spin-photon interfaces.
References
More filters
Journal ArticleDOI

The quantum internet

TL;DR: In this paper, the authors proposed a method for quantum interconnects, which convert quantum states from one physical system to those of another in a reversible manner, allowing the distribution of entanglement across the network and teleportation of quantum states between nodes.
Journal ArticleDOI

Advances in quantum metrology

TL;DR: Quantum metrology is the use of quantum techniques such as entanglement to yield higher statistical precision than purely classical approaches as discussed by the authors, where the central limit theorem implies that the reduction is proportional to the square root of the number of repetitions.
Journal ArticleDOI

Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication

TL;DR: This work presents a scheme of a quantum repeater that connects a string of (imperfect) entangled pairs of particles by using a novel nested purification protocol, thereby creating a single distant pair of high fidelity.
Journal ArticleDOI

Quantum state transfer and entanglement distribution among distant nodes in a quantum network

TL;DR: In this paper, a scheme to utilize photons for ideal quantum transmission between atoms located at spatially separated nodes of a quantum network was proposed, which employs special laser pulses that excite an atom inside an optical cavity at the sending node so that its state is mapped into a time-symmetric photon wave packet that will enter a cavity at receiving node and be absorbed by an atom there with unit probability.
Journal ArticleDOI

Photonic quantum technologies

TL;DR: The first quantum technology that harnesses quantum mechanical effects for its core operation has arrived in the form of commercially available quantum key distribution systems as mentioned in this paper, which achieves enhanced security by encoding information in photons such that an eavesdropper in the system can be detected.
Related Papers (5)