scispace - formally typeset
Open AccessJournal ArticleDOI

CH3NH3PbI3 perovskites: Ferroelasticity revealed

Reads0
Chats0
TLDR
Experiments show that the configuration of CH3NH3PbI3 ferroelastic domains in single crystals and polycrystalline films can be controlled with applied stress, suggesting that strain engineering may be used to tune the properties of this material.
Abstract
Ferroelectricity has been proposed as a plausible mechanism to explain the high photovoltaic conversion efficiency in organic-inorganic perovskites; however, convincing experimental evidence in support of this hypothesis is still missing. Identifying and distinguishing ferroelectricity from other properties, such as piezoelectricity, ferroelasticity, etc., is typically nontrivial because these phenomena can coexist in many materials. In this work, a combination of microscopic and nanoscale techniques provides solid evidence for the existence of ferroelastic domains in both CH3NH3PbI3 polycrystalline films and single crystals in the pristine state and under applied stress. Experiments show that the configuration of CH3NH3PbI3 ferroelastic domains in single crystals and polycrystalline films can be controlled with applied stress, suggesting that strain engineering may be used to tune the properties of this material. No evidence of concomitant ferroelectricity was observed. Because grain boundaries have an impact on the long-term stability of organic-inorganic perovskite devices, and because the ferroelastic domain boundaries may differ from regular grain boundaries, the discovery of ferroelasticity provides a new variable to consider in the quest for improving their stability and enabling their widespread adoption.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Touching is believing: interrogating organometal halide perovskite solar cells at the nanoscale via scanning probe microscopy

TL;DR: In this paper, the authors proposed that scanning probe microscopy techniques have great potential to realize such promises at the nanoscale, and highlight some of the recent progresses and challenges along this line of investigation toward local probing of photocurrent, work function, ionic activities, polarization switching, and chemical degradation.
Journal ArticleDOI

Enhanced Piezoelectric Response in Hybrid Lead Halide Perovskite Thin Films via Interfacing with Ferroelectric PbZr0.2Ti0.8O3

TL;DR: A more than 10-fold enhancement of the piezoelectric coefficient d33 of polycrystalline CH3NH3PbI3 (MAPbI 3) films when interfacing them with ferroelectric PbZr0.2Ti0.8O3 (PZT) is reported.
Journal ArticleDOI

Exploring the Antipolar Nature of Methylammonium Lead Halides: A Monte Carlo and Pyrocurrent Study

TL;DR: A statistical phase transition model is proposed which accurately describes the ordering of the CH3NH3+ cations and the whole phase transition sequence of the chiral perovskite and involves the short-range strain-mediated and long-range dipolar interactions between the cations.
Journal ArticleDOI

Probing of Local Multifield Coupling Phenomena of Advanced Materials by Scanning Probe Microscopy Techniques.

TL;DR: The characterization of the local multifield coupling phenomenon (MCP) in various functional/structural materials by using scanning probe microscopy (SPM)-based techniques is comprehensively reviewed.
References
More filters
Journal ArticleDOI

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells

TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Journal ArticleDOI

Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites

TL;DR: A low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight is reported.
Journal ArticleDOI

Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber.

TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Journal Article

Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber

TL;DR: In this paper, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Journal ArticleDOI

The emergence of perovskite solar cells

TL;DR: In this article, a review describes the rapid progress that has been made in hybrid organic-inorganic perovskite solar cells and their applications in the photovoltaic sector.
Related Papers (5)