scispace - formally typeset
Journal ArticleDOI

Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas.

Bin Luo, +2 more
- 12 Mar 2012 - 
- Vol. 8, Iss: 5, pp 630-646
Reads0
Chats0
TLDR
This review gives a brief overview of the recent research concerning chemical and thermal approaches toward the production of well-defined graphene-based nanomaterials and their applications in energy-related areas, including solar cells, lithium ion secondary batteries, supercapacitors, and catalysis.
Abstract
A 'gold rush' has been triggered all over the world for exploiting the possible applications of graphene-based nanomaterials. For this purpose, two important problems have to be solved; one is the preparation of graphene-based nanomaterials with well-defined structures, and the other is the controllable fabrication of these materials into functional devices. This review gives a brief overview of the recent research concerning chemical and thermal approaches toward the production of well-defined graphene-based nanomaterials and their applications in energy-related areas, including solar cells, lithium ion secondary batteries, supercapacitors, and catalysis. With a focus on chemical and thermal approaches toward the production of well-defined graphene-based nanomaterials, this paper gives a brief overview of the recent exciting research results and the potential applications of graphene nanomaterials in energy-related areas including solar cells, lithium ion secondary batteries, supercapacitors, and catalysis which have attracted great attention all over the world.

read more

Citations
More filters
Journal ArticleDOI

Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications

TL;DR: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,† Vimlesh Chandra, Namdong Kim, K. Kim,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim.
Journal ArticleDOI

Design and Mechanisms of Asymmetric Supercapacitors.

TL;DR: This review looks at the essential energy-storage mechanisms and performance evaluation criteria for asymmetric supercapacitors to understand the wide-ranging research conducted in this area and highlights several key scientific challenges.
Posted Content

Mn3O4-Graphene Hybrid as a High Capacity Anode Material for Lithium Ion Batteries

TL;DR: The two-step solution-phase reactions to form hybrid materials of Mn(3)O(4) nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications should offer a new technique for the design and synthesis of battery electrodes based on highly insulating materials.
Journal ArticleDOI

3D carbon based nanostructures for advanced supercapacitors

TL;DR: In this article, a review of 3D carbon-based nanostructures for advanced supercapacitor applications is presented, which includes CNTs-based networks, graphene-based architectures, hierarchical porous carbon-bimodal structures, and other even more complex 3D configurations.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Issues and challenges facing rechargeable lithium batteries

TL;DR: A brief historical review of the development of lithium-based rechargeable batteries is presented, ongoing research strategies are highlighted, and the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems are discussed.
Journal ArticleDOI

Materials for electrochemical capacitors

TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Related Papers (5)