scispace - formally typeset
Journal ArticleDOI

Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis

Jing Xu, +3 more
- 05 Nov 2013 - 
- Vol. 1, Iss: 46, pp 14766-14772
TLDR
In this article, a simple chemical exfoliation method was used to obtain single atomic layer nanosheets with a single thickness of 0.4 nm and a lateral size of micrometers.
Abstract
Single atomic layer nanosheet materials show great application potential in many fields due to their enhanced intrinsic properties compared to their counterparts and newly born properties. Herein, g-C3N4 nanosheets with a single atomic layer structure are prepared by a simple chemical exfoliation method. The as-prepared nanosheets show a single atomic thickness of 0.4 nm and a lateral size of micrometers. The structure and photocatalytic properties of the as-prepared single layer g-C3N4 are then studied. Compared with the bulk g-C3N4, single layer g-C3N4 nanosheets show great superiority in photogenerated charge carrier transfer and separation. Accordingly, the photocatalytic H2 production and pollutant decomposition activities and photocurrent generation of single layer g-C3N4 nanosheets are much higher than those of the bulk g-C3N4, indicating the great application potential of single layer g-C3N4 nanosheets in photocatalysis and photosynthesis.

read more

Citations
More filters
Journal ArticleDOI

Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability?

TL;DR: It is anticipated that this review can stimulate a new research doorway to facilitate the next generation of g-C3N4-based photocatalysts with ameliorated performances by harnessing the outstanding structural, electronic, and optical properties for the development of a sustainable future without environmental detriment.
Journal ArticleDOI

Polymeric Photocatalysts Based on Graphitic Carbon Nitride

TL;DR: The photo-catalytic applications of g-C3N4 -based photocatalysts in the fields of water splitting, CO2 reduction, pollutant degradation, organic syntheses, and bacterial disinfection are reviewed, with emphasis on photocatalysis promoted by carbon materials, non-noble-metal coc atalysts, and Z-scheme heterojunctions.
Journal ArticleDOI

A review on g-C3N4-based photocatalysts

TL;DR: In this paper, the fundamental mechanism of heterogeneous photocatalysis, advantages, challenges and the design considerations of g-C3N4-based photocatalysts are summarized, including their crystal structural, surface phisicochemical, stability, optical, adsorption, electrochemical, photoelectrochemical and electronic properties.
Journal ArticleDOI

g-C3N4-Based Heterostructured Photocatalysts

TL;DR: In this article, a review summarizes the recent significant progress on the design of g-C3N4-based heterostructured photocatalysts and their special separation/transfer mechanisms of photogenerated charge carriers.
Journal ArticleDOI

Graphitic Carbon Nitride Polymers toward Sustainable Photoredox Catalysis.

TL;DR: The methods to modify the electronic structure, nanostructure, crystal structure, and heterostructure of g-C3 N4, together with correlations between its structure and performance are illustrated.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

A metal-free polymeric photocatalyst for hydrogen production from water under visible light

TL;DR: It is shown that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor.
Journal ArticleDOI

Processable aqueous dispersions of graphene nanosheets

TL;DR: It is reported that chemically converted graphene sheets obtained from graphite can readily form stable aqueous colloids through electrostatic stabilization, making it possible to process graphene materials using low-cost solution processing techniques, opening up enormous opportunities to use this unique carbon nanostructure for many technological applications.
Related Papers (5)