scispace - formally typeset
Journal ArticleDOI

Chemistry with ADF

Reads0
Chats0
TLDR
The “Activation‐strain TS interaction” (ATS) model of chemical reactivity is reviewed as a conceptual framework for understanding how activation barriers of various types of reaction mechanisms arise and how they may be controlled, for example, in organic chemistry or homogeneous catalysis.
Abstract
We present the theoretical and technical foundations of the Amsterdam Density Functional (ADF) program with a survey of the characteristics of the code (numerical integration, density fitting for the Coulomb potential, and STO basis functions). Recent developments enhance the efficiency of ADF (e.g., parallelization, near order-N scaling, QM/MM) and its functionality (e.g., NMR chemical shifts, COSMO solvent effects, ZORA relativistic method, excitation energies, frequency-dependent (hyper)polarizabilities, atomic VDD charges). In the Applications section we discuss the physical model of the electronic structure and the chemical bond, i.e., the Kohn–Sham molecular orbital (MO) theory, and illustrate the power of the Kohn–Sham MO model in conjunction with the ADF-typical fragment approach to quantitatively understand and predict chemical phenomena. We review the “Activation-strain TS interaction” (ATS) model of chemical reactivity as a conceptual framework for understanding how activation barriers of various types of (competing) reaction mechanisms arise and how they may be controlled, for example, in organic chemistry or homogeneous catalysis. Finally, we include a brief discussion of exemplary applications in the field of biochemistry (structure and bonding of DNA) and of time-dependent density functional theory (TDDFT) to indicate how this development further reinforces the ADF tools for the analysis of chemical phenomena. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 931–967, 2001

read more

Citations
More filters
Journal ArticleDOI

Optimization of strong and weak coordinates

TL;DR: A screening function that depends on atom-pair distances to differentiate strong coordinates from weak coordinates significantly accelerates the optimization of these coordinates, and thus of the overall geometry.
Journal ArticleDOI

Anomalous Size Dependence of Optical Properties in Black Phosphorus Quantum Dots

TL;DR: In this paper, the size-dependent electronic, optical absorption, and emission properties of black phosphorus quantum dots (BPQDs) were systematically studied by employing time-dependent density functional theory calculations.
Journal ArticleDOI

Structural and spectroscopic characterization of a charge-separated uranium benzophenone ketyl radical complex.

TL;DR: The reaction of [((t-Bu)ArO) 3tacn)U (III)] with 4,4'-di- tert-butylbenzophenone affords a unique isolable U(IV) ketyl radical species and attempts at isolation were unsuccessful and resulted in methoxide complex from H abstraction and dinuclear para-coupled complex.
Journal ArticleDOI

DFT benchmark study for the oxidative addition of CH4 to Pd. Performance of various density functionals

TL;DR: In this paper, the authors evaluated the performance of 24 density functionals for describing the potential energy surface (PES) of the archetypal oxidative addition reaction of the methane C-H bond to the palladium atom by comparing the results with our recent ab initio [CCSD(T)] benchmark study.
Journal ArticleDOI

Photochromic dye-sensitized solar cells with light-driven adjustable optical transmission and power conversion efficiency

TL;DR: Huaulme et al. as discussed by the authors presented photochromic dye-sensitized solar cells (DSSCs) based on dyes with a donor-π-conjugated-bridge-acceptor structure, where the π-consjugated bridge is substituted by a diphenyl-naphthopyran photo-chromic unit.
References
More filters
Journal ArticleDOI

Density‐functional thermochemistry. III. The role of exact exchange

TL;DR: In this article, a semi-empirical exchange correlation functional with local spin density, gradient, and exact exchange terms was proposed. But this functional performed significantly better than previous functionals with gradient corrections only, and fits experimental atomization energies with an impressively small average absolute deviation of 2.4 kcal/mol.
Journal ArticleDOI

Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density

TL;DR: Numerical calculations on a number of atoms, positive ions, and molecules, of both open- and closed-shell type, show that density-functional formulas for the correlation energy and correlation potential give correlation energies within a few percent.
Journal ArticleDOI

Self-Consistent Equations Including Exchange and Correlation Effects

TL;DR: In this paper, the Hartree and Hartree-Fock equations are applied to a uniform electron gas, where the exchange and correlation portions of the chemical potential of the gas are used as additional effective potentials.
Journal ArticleDOI

Density-functional exchange-energy approximation with correct asymptotic behavior.

TL;DR: This work reports a gradient-corrected exchange-energy functional, containing only one parameter, that fits the exact Hartree-Fock exchange energies of a wide variety of atomic systems with remarkable accuracy, surpassing the performance of previous functionals containing two parameters or more.
Journal ArticleDOI

Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation.

TL;DR: A way is found to visualize and understand the nonlocality of exchange and correlation, its origins, and its physical effects as well as significant interconfigurational and interterm errors remain.
Related Papers (5)