scispace - formally typeset
Journal ArticleDOI

Cobalt‐Embedded Nitrogen‐Rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at All pH Values

Reads0
Chats0
TLDR
The synthesis of cobalt-embedded nitrogen-rich carbon nanotubes (NRCNTs) that can efficiently electrocatalyze the hydrogen evolution reaction (HER) with activities close to that of Pt and function well under acidic, neutral or basic media alike, allowing them to be coupled with the best available oxygen-evolving catalysts.
Abstract
Despite being technically possible, splitting water to generate hydrogen is still practically unfeasible due mainly to the lack of sustainable and efficient catalysts for the half reactions involved. Herein we report the synthesis of cobalt-embedded nitrogen-rich carbon nanotubes (NRCNTs) that 1) can efficiently electrocatalyze the hydrogen evolution reaction (HER) with activities close to that of Pt and 2) function well under acidic, neutral or basic media alike, allowing them to be coupled with the best available oxygen-evolving catalysts-which also play crucial roles in the overall water-splitting reaction. The materials are synthesized by a simple, easily scalable synthetic route involving thermal treatment of Co(2+) -embedded graphitic carbon nitride derived from inexpensive starting materials (dicyandiamide and CoCl2 ). The materials' efficient catalytic activity is mainly attributed to their nitrogen dopants and concomitant structural defects.

read more

Citations
More filters
Journal ArticleDOI

Noble metal-free hydrogen evolution catalysts for water splitting

TL;DR: This review highlights the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER), and summarizes some important examples showing that non-Pt HER electrocatsalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalyst.
Journal ArticleDOI

Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction

TL;DR: An overview of recent development of TMP nanomaterials as catalysts for hydrogen generation with high activity and stability is presented, and specific strategies to further improve the catalytic efficiency and stability of T MPs by structural engineering are demonstrated.
Journal ArticleDOI

Recent Progress in Cobalt‐Based Heterogeneous Catalysts for Electrochemical Water Splitting

TL;DR: Current progress in this field is summarized here, especially highlighting several important bifunctional catalysts, and various approaches to improve or optimize the electrocatalysts are introduced.
Journal ArticleDOI

Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis.

TL;DR: A critical appraisal of different synthetic approaches to Cu and Cu-based nanoparticles and copper nanoparticles immobilized into or supported on various support materials (SiO2, magnetic support materials, etc.), along with their applications in catalysis.
Journal ArticleDOI

Catalysis with two-dimensional materials and their heterostructures

TL;DR: Recent advances in the use of graphene and other 2D materials in catalytic applications are reviewed, focusing in particular on the catalytic activity of heterogeneous systems such as van der Waals heterostructures (stacks of several 2D crystals).
References
More filters
Journal ArticleDOI

Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction.

TL;DR: It is reported that vertically aligned nitrogen-containing carbon nanotubes (VA-NCNTs) can act as a metal-free electrode with a much better electrocatalytic activity, long-term operation stability, and tolerance to crossover effect than platinum for oxygen reduction in alkaline fuel cells.
Journal ArticleDOI

Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts.

TL;DR: The active site for hydrogen evolution, a reaction catalyzed by precious metals, on nanoparticulate molybdenum disulfide (MoS2) is determined by atomically resolving the surface of this catalyst before measuring electrochemical activity in solution.
Journal ArticleDOI

Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction

TL;DR: In this paper, the authors report a protocol for evaluating the activity, stability, and Faradaic efficiency of electrodeposited oxygen-evolving electrocatalysts for water oxidation.
Journal ArticleDOI

MoS2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction

TL;DR: In this article, a selective solvothermal synthesis of MoS2 nanoparticles on reduced graphene oxide (RGO) sheets suspended in solution was developed, which exhibited superior electrocatalytic activity in the hydrogen evolution reaction (HER).
Journal ArticleDOI

In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+

TL;DR: A catalyst that forms upon the oxidative polarization of an inert indium tin oxide electrode in phosphate-buffered water containing cobalt (II) ions is reported that not only forms in situ from earth-abundant materials but also operates in neutral water under ambient conditions.
Related Papers (5)