scispace - formally typeset
Open AccessJournal ArticleDOI

Defect-Assisted Photoinduced Halide Segregation in Mixed-Halide Perovskite Thin Films

Reads0
Chats0
TLDR
In this paper, it was shown that ion segregation takes place via halide defects, resulting in iodide-rich lowbandgap regions close to the illuminated surface of the film, driven by the strong gradient in carrier generation rate through the thickness of these strongly absorbing materials.
Abstract
Solution-processable metal halide perovskites show immense promise for use in photovoltaics and other optoelectronic applications. The ability to tune their bandgap by alloying various halide anions (for example, in CH3NH3Pb(I1–xBrx)3, 0 < x < 1) is however hampered by the reversible photoinduced formation of sub-bandgap emissive states. We find that ion segregation takes place via halide defects, resulting in iodide-rich low-bandgap regions close to the illuminated surface of the film. This segregation may be driven by the strong gradient in carrier generation rate through the thickness of these strongly absorbing materials. Once returned to the dark, entropically driven intermixing of halides returns the system to a homogeneous condition. We present approaches to suppress this process by controlling either the internal light distribution or the defect density within the film. These results are relevant to stability in both single- and mixed-halide perovskites, leading the way toward tunable and stable p...

read more

Citations
More filters
Journal ArticleDOI

Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals

TL;DR: Lead-halide perovskites have entered the family of colloidal nanocrystals, showing excellent optical properties and easy synthesizability, and insight is provided into their chemical versatility, stability challenges and use in optoelectronics.
Journal ArticleDOI

Maximizing and stabilizing luminescence from halide perovskites with potassium passivation

TL;DR: This work demonstrates substantial mitigation of both non-radiative losses and photoinduced ion migration in perovskite films and interfaces by decorating the surfaces and grain boundaries with passivating potassium halide layers, and demonstrates the inhibition of transient photo induced ion-migration processes across a wide range of mixed halide perovSKite bandgaps in materials that exhibit bandgap instabilities when unpassivated.
Journal ArticleDOI

Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics.

TL;DR: Recommendations are made on how accelerated testing should be performed to rapidly develop solar cells that are both extraordinarily efficient and stable.
Journal ArticleDOI

Triple-halide wide–band gap perovskites with suppressed phase segregation for efficient tandems

TL;DR: A method for incorporating chloride is reported that allows for fabrication of stable triple-halide perovskites with a band gap of 1.67 electron volts and a factor of 2 increase in photocarrier lifetime and charge-carrier mobility that resulted from enhancing the solubility of chlorine by replacing some of the iodine with bromine to shrink the lattice parameter.
Journal ArticleDOI

Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts.

TL;DR: Th Thin lead oxysalt layers passivate hybrid perovskite surfaces under an ambient atmosphere and enhance solar cell efficiency and formation of the lead oxYSalt layer increases the carrier recombination lifetime and boosts the efficiency of the solar cells to 21.1%.
References
More filters
Journal ArticleDOI

Compositional engineering of perovskite materials for high-performance solar cells

TL;DR: This work combines the promising—but relatively unstable formamidinium lead iodide with FAPbI3 with methylammonium lead bromide as the light-harvesting unit in a bilayer solar-cell architecture and improves the power conversion efficiency of the solar cell to more than 18 per cent under a standard illumination.
Journal ArticleDOI

Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells

TL;DR: This paper demonstrates highly efficient solar cells exhibiting 12.3% in a power conversion efficiency of under standard AM 1.5, for the most efficient device, as a result of tunable composition for the light harvester in conjunction with a mesoporous TiO2 film and a hole conducting polymer.
Journal ArticleDOI

A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells

TL;DR: It is shown that using cesium ions along with formamidinium cations in lead bromide–iodide cells improved thermal and photostability and lead to high efficiency in single and tandem cells.
Journal ArticleDOI

Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction

TL;DR: In this article, the crystal structure of LiSbWO6 was solved from X-ray powder diffraction data and the structure was refined using Rietveld profile refinement principles.
Related Papers (5)