scispace - formally typeset
Open AccessJournal ArticleDOI

Diffraction imaging of nanocrystalline structures in organic semiconductor molecular thin films

TLDR
Scanning electron nanobeam diffraction is used to monitor the morphology of organic thin films with nanometre resolution, revealing information on the arrangement of crystalline domains useful for structure–property relationship understanding.
Abstract
The properties of organic solids depend on their structure and morphology, yet direct imaging using conventional electron microscopy methods is hampered by the complex internal structure of these materials and their sensitivity to electron beams. Here, we manage to observe the nanocrystalline structure of two organic molecular thin-film systems using transmission electron microscopy by employing a scanning nanodiffraction method that allows for full access to reciprocal space over the size of a spatially localized probe (~2 nm). The morphologies revealed by this technique vary from grains with pronounced segmentation of the structure-characterized by sharp grain boundaries and overlapping domains-to liquid-crystal structures with crystalline orientations varying smoothly over all possible rotations that contain disclinations representing singularities in the director field. The results show how structure-property relationships can be visualized in organic systems using techniques previously only available for hard materials such as metals and ceramics.

read more

Content maybe subject to copyright    Report

Lawrence Berkeley National Laboratory
Recent Work
Title
Diffraction imaging of nanocrystalline structures in organic semiconductor molecular thin
films.
Permalink
https://escholarship.org/uc/item/9750j84r
Journal
Nature materials, 18(8)
ISSN
1476-1122
Authors
Panova, Ouliana
Ophus, Colin
Takacs, Christopher J
et al.
Publication Date
2019-08-01
DOI
10.1038/s41563-019-0387-3
Peer reviewed
eScholarship.org Powered by the California Digital Library
University of California


Diraction imaging of nanocrystalline structure
in organic semiconductor molecular thin lms




 !"
# $

%"$
&
'(
&
$
)*
+ 

,-.(/0012..
$"21(
(,%+$"2%'2$"2
1(
./232%+$"2
%'2$"21(
(%%'2"1(
&
,-.(/00(.12 
1(
)
,-.-$-/0012..
$"21(
*
./02(04%+$"2%'2
$"21(
05-6' 0

!'72-


'
!  . 0      
-02 2  -00 0   -2
--'2-8.-
2'- 9+-0'
2.+0-:-2-0
-  -2 ;!/< '2 -20 0
=-+..
>.2>';?-< !-0'2
 7 2 .- 0 +  0- . 
@>'20'0-
@7@2 +220-2
'00
: !++@2
 ' >  0 2- 0 7 2 2
'.---

!-02.2.-'2
+002-
- 0 .-+"
@
9+  -00 0 
 -2 -  2  0   .
.-.0
 . -   - -    . 0 
--- !A222
-8;.<0
2'--00-
! +  - ' - . 2-2 00
2 !++-,@(0
!-/2;,@(!/<7
.
2-  0@.+ 0 . @  
0>0-2- 
02200-20-
8-.2   . - 0 .  " '+
.@:--.
0@2.2'2-2- 

!++2B8'2-.'2.2-
0--"--.

&@*
0
C
0@-0
'
 -     - 
- D+@.-00--
0-''82->.
 D-   8   22
0E0'"'.-2-2-
+-+08
-   0 0 
F



D .+  
0-2:0.-
8 . +2 10 + +@- 
02  -  .- +@  '
-0-00-.
+0.>.02A002
0- 
D2+>..+
0-:-2- !:--**G@
;@';@282<@H @H@b5&@bGI@)@2<
';) J B J @ ;&G@ 82HG@'I @ & @ 2<'>HcIH&I @
><

2''@,!(;3$!!
<

!+=00
,@(!/ !  2-  2-  :- 2H&@';@
2@@2<H@'II ;$!!!<
&
'   @
      -  '2 
>. 0-+-
0  -2  + +  0- . 
-0.--'2
>.2.-2- !2..-
.'0@2.-

Figures
Citations
More filters
Journal ArticleDOI

Strain fields in twisted bilayer graphene

TL;DR: These results establish the reconstruction mechanics underpinning the twist-angle-dependent electronic behaviour of twisted bilayer graphene and provide a framework for directly visualizing structural relaxation, disorder and strain in moiré materials.
Journal ArticleDOI

Direct Imaging of Correlated Defect Nanodomains in a Metal-Organic Framework

TL;DR: It is demonstrated that the emerging technique of scanning electron diffraction (SED) can bridge this gap uniquely enabling both nanoscale crystallographic analysis and the low-dose formation of multiple diffraction contrast images for defect analysis in MOFs.
Journal ArticleDOI

Insight into the structures and dynamics of organic semiconductors through solid-state NMR spectroscopy

TL;DR: In this article, a review of the application of solid-state NMR to organic semiconductors is presented, highlighting its role in state-of-the-art materials design and characterization.
Journal ArticleDOI

Opportunities for Cryogenic Electron Microscopy in Materials Science and Nanoscience.

TL;DR: Six major areas in materials science that may benefit from the interdisciplinary application of cryo-EM are identified: batteries, soft polymers, metal-organic frameworks, perovskite solar cells, electrocatalysts, and quantum materials.
References
More filters
Journal ArticleDOI

High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends

TL;DR: In this article, the authors report highly efficient polymer solar cells based on a bulk heterojunction of polymer poly(3-hexylthiophene) and methanofullerene.
Journal ArticleDOI

Two-dimensional charge transport in self-organized, high-mobility conjugated polymers

TL;DR: In this article, the authors used thin-film, field effect transistor structures to probe the transport properties of the ordered microcrystalline domains in the conjugated polymer poly(3-hexylthiophene), P3HT.
Journal ArticleDOI

Polymer‐Fullerene Bulk‐Heterojunction Solar Cells

TL;DR: An outlook is presented on what will be required to drive this young photovoltaic technology towards the next major milestone, a 10% power conversion efficiency, considered by many to represent the efficiency at which OPV can be adopted in wide-spread applications.
Journal ArticleDOI

Liquid-crystalline semiconducting polymers with high charge-carrier mobility.

TL;DR: New semiconducting liquid-crystalline thieno[3,2-b ]thiophene polymers are reported on, the enhancement in charge-carrier mobility achieved through highly organized morphology from processing in the mesophase, and the effects of exposure to both ambient and low-humidity air on the performance of transistor devices.
Related Papers (5)
Frequently Asked Questions (1)
Q1. What are the contributions in "Diffraction imaging of nanocrystalline structure in organic semiconductor molecular thin films" ?

In this paper, a scanning nanodiffraction ( SND ) method was used to observe the nanocrystalline structure of two organic molecular thin film systems using transmission electron microscopy ( TEM ).