scispace - formally typeset
Open AccessJournal ArticleDOI

Ecology, Diversity, and Evolution of Magnetotactic Bacteria

Reads0
Chats0
TLDR
The purpose of this review is focused on the diversity and the ecology of the MTB and also the evolution and transfer of the molecular determinants involved in magnetosome formation.
Abstract
SUMMARY Magnetotactic bacteria (MTB) are widespread, motile, diverse prokaryotes that biomineralize a unique organelle called the magnetosome. Magnetosomes consist of a nano-sized crystal of a magnetic iron mineral that is enveloped by a lipid bilayer membrane. In cells of almost all MTB, magnetosomes are organized as a well-ordered chain. The magnetosome chain causes the cell to behave like a motile, miniature compass needle where the cell aligns and swims parallel to magnetic field lines. MTB are found in almost all types of aquatic environments, where they can account for an important part of the bacterial biomass. The genes responsible for magnetosome biomineralization are organized as clusters in the genomes of MTB, in some as a magnetosome genomic island. The functions of a number of magnetosome genes and their associated proteins in magnetosome synthesis and construction of the magnetosome chain have now been elucidated. The origin of magnetotaxis appears to be monophyletic; that is, it developed in a common ancestor to all MTB, although horizontal gene transfer of magnetosome genes also appears to play a role in their distribution. The purpose of this review, based on recent progress in this field, is focused on the diversity and the ecology of the MTB and also the evolution and transfer of the molecular determinants involved in magnetosome formation.

read more

Citations
More filters
Journal ArticleDOI

On the origin of microbial magnetoreception.

TL;DR: It is proposed that initial biomineralization of intracellular iron nanoparticles in early life evolved as a mechanism for mitigating the toxicity of reactive oxygen species (ROS), as ultraviolet radiation and free-iron-generated ROS would have been a major environmental challenge for life on early Earth.
Journal ArticleDOI

Iron-biomineralizing organelle in magnetotactic bacteria: function, synthesis and preservation in ancient rock samples.

TL;DR: An overview of the mechanisms leading to iron mineralization in MTB is provided, their distribution in the environment is described, and the possible function of the magnetite and greigite nanoparticles are discussed.
Journal ArticleDOI

Isolation, cultivation and genomic analysis of magnetosome biomineralization genes of a new genus of South-seeking magnetotactic cocci within the Alphaproteobacteria.

TL;DR: Preliminary genomic data obtained by pyrosequencing shows that M. australis strain IT-1 contains a genomic region with genes involved in biomineralization similar to those found in the most closely related magnetotactic cocci Magnetococcus marinus strain MC-1.
Journal ArticleDOI

Magnetotactic bacteria as a new model for P sequestration in the ferruginous Lake Pavin

TL;DR: The role of microorganisms in the geochemical cycle of P has received great interest in the context of enhanced biological phosphorus removal and phosphorite formation as mentioned in this paper, in which the authors combine scanning and transmission electron microscopies, confocal laser scanning microscopy and synchrotron-based x-ray microfluorescence to analyse the distribution of P at the oxic-anoxic interface in the water column of the ferruginous Lake Pavin.
Journal ArticleDOI

A Look into the Biochemistry of Magnetosome Biosynthesis in Magnetotactic Bacteria

TL;DR: The current knowledge on magnetosome biosynthesis is presented with a focus on the different proteins and the main biochemical pathways along this process, including an ensemble of unique proteins that participate in different stages during magnetosomes formation.
References
More filters
Journal ArticleDOI

Oxidative mechanisms in the toxicity of metal ions

TL;DR: Some mechanisms associated with the toxicities of metal ions are very similar to the effects produced by many organic xenobiotics, related to differences in solubilities, absorbability, transport, chemical reactions, and the complexes that are formed within the body.
Journal ArticleDOI

A marine microbial consortium apparently mediating anaerobic oxidation of methane

TL;DR: In this article, the authors provide microscopic evidence for a structured consortium of archaea and sulphate-reducing bacteria, which are identified by fluorescence in situ hybridization using specific 16S rRNA-targeted oligonucleotide probes.
Journal ArticleDOI

Siderophores: Structure and Function of Microbial Iron Transport Compounds

TL;DR: Overproduction of the siderophore and its transport system at low iron is in this species well established to be the result of negative transcriptional repression, but the detailed mechanism may be positive in other organisms.
Journal ArticleDOI

Electronic Conduction of Magnetite (Fe 3 O 4 ) and its Transition Point at Low Temperatures

E. J. W. Verwey
- 01 Aug 1939 - 
TL;DR: In this paper, the authors measured the electronic conductivity of a number of iron oxides of the homogeneous "Fe3O4" phase, especially as a function of the exact stoichiometrie composition of the material.
Journal ArticleDOI

Magnetosome formation in prokaryotes

TL;DR: Progress has been made in elucidating the molecular, biochemical, chemical and genetic bases of magnetosome formation and understanding how these unique intracellular organelles function.
Related Papers (5)