scispace - formally typeset
Open AccessJournal ArticleDOI

Ecology, Diversity, and Evolution of Magnetotactic Bacteria

Reads0
Chats0
TLDR
The purpose of this review is focused on the diversity and the ecology of the MTB and also the evolution and transfer of the molecular determinants involved in magnetosome formation.
Abstract
SUMMARY Magnetotactic bacteria (MTB) are widespread, motile, diverse prokaryotes that biomineralize a unique organelle called the magnetosome. Magnetosomes consist of a nano-sized crystal of a magnetic iron mineral that is enveloped by a lipid bilayer membrane. In cells of almost all MTB, magnetosomes are organized as a well-ordered chain. The magnetosome chain causes the cell to behave like a motile, miniature compass needle where the cell aligns and swims parallel to magnetic field lines. MTB are found in almost all types of aquatic environments, where they can account for an important part of the bacterial biomass. The genes responsible for magnetosome biomineralization are organized as clusters in the genomes of MTB, in some as a magnetosome genomic island. The functions of a number of magnetosome genes and their associated proteins in magnetosome synthesis and construction of the magnetosome chain have now been elucidated. The origin of magnetotaxis appears to be monophyletic; that is, it developed in a common ancestor to all MTB, although horizontal gene transfer of magnetosome genes also appears to play a role in their distribution. The purpose of this review, based on recent progress in this field, is focused on the diversity and the ecology of the MTB and also the evolution and transfer of the molecular determinants involved in magnetosome formation.

read more

Citations
More filters
Journal ArticleDOI

Magnetotactic bacteria and magnetosomes – Scope and challenges

TL;DR: The ability of MTB to biomineralize the magnetic particles (magnetosomes) into uniform nano-sized, highly crystalline structure with uniform magnetic properties has made the bacteria an important topic of research.
Journal ArticleDOI

Microbe-Mediated Extracellular and Intracellular Mineralization: Environmental, Industrial, and Biotechnological Applications

TL;DR: The different types of microbe‐mediated biomineralization that occur in nature, their mechanisms, as well as their applications are elucidated to create a backdrop for future research.
Journal ArticleDOI

How Caenorhabditis elegans Senses Mechanical Stress, Temperature, and Other Physical Stimuli

TL;DR: This chapter summarizes current knowledge about the sensitivity and response dynamics of individual classes of C. elegans mechano- and thermosensory neurons from in vivo calcium imaging and whole-cell patch-clamp electrophysiology studies, and describes the roles of conserved molecules and signaling pathways in mediating the remarkably sensitive responses of these nematodes to mechanical and thermal cues.
Journal ArticleDOI

Bacterial magnetosome and its potential application

TL;DR: This article highlights recent advances in the understanding of the biochemical and magnetic characteristics of bacterial magnetosome, as well as the magnetosomesome formation mechanism including iron ions uptake, magnetOSome membrane formation, biomineralization and magnetosom chain assembly.
Journal ArticleDOI

Rice Paddy Nitrospirae Carry and Express Genes Related to Sulfate Respiration: Proposal of the New Genus “Candidatus Sulfobium”

TL;DR: A metaproteogenomic analysis of Nitrospirae bacterium Nbg-4, a representative of this clade of microorganisms, showed that such microorganisms form a novel genus within the Nitro Spirae, with NBG-4 as a representative species.
References
More filters
Journal ArticleDOI

Oxidative mechanisms in the toxicity of metal ions

TL;DR: Some mechanisms associated with the toxicities of metal ions are very similar to the effects produced by many organic xenobiotics, related to differences in solubilities, absorbability, transport, chemical reactions, and the complexes that are formed within the body.
Journal ArticleDOI

A marine microbial consortium apparently mediating anaerobic oxidation of methane

TL;DR: In this article, the authors provide microscopic evidence for a structured consortium of archaea and sulphate-reducing bacteria, which are identified by fluorescence in situ hybridization using specific 16S rRNA-targeted oligonucleotide probes.
Journal ArticleDOI

Siderophores: Structure and Function of Microbial Iron Transport Compounds

TL;DR: Overproduction of the siderophore and its transport system at low iron is in this species well established to be the result of negative transcriptional repression, but the detailed mechanism may be positive in other organisms.
Journal ArticleDOI

Electronic Conduction of Magnetite (Fe 3 O 4 ) and its Transition Point at Low Temperatures

E. J. W. Verwey
- 01 Aug 1939 - 
TL;DR: In this paper, the authors measured the electronic conductivity of a number of iron oxides of the homogeneous "Fe3O4" phase, especially as a function of the exact stoichiometrie composition of the material.
Journal ArticleDOI

Magnetosome formation in prokaryotes

TL;DR: Progress has been made in elucidating the molecular, biochemical, chemical and genetic bases of magnetosome formation and understanding how these unique intracellular organelles function.
Related Papers (5)