scispace - formally typeset
Open AccessJournal ArticleDOI

Ecology, Diversity, and Evolution of Magnetotactic Bacteria

Reads0
Chats0
TLDR
The purpose of this review is focused on the diversity and the ecology of the MTB and also the evolution and transfer of the molecular determinants involved in magnetosome formation.
Abstract
SUMMARY Magnetotactic bacteria (MTB) are widespread, motile, diverse prokaryotes that biomineralize a unique organelle called the magnetosome. Magnetosomes consist of a nano-sized crystal of a magnetic iron mineral that is enveloped by a lipid bilayer membrane. In cells of almost all MTB, magnetosomes are organized as a well-ordered chain. The magnetosome chain causes the cell to behave like a motile, miniature compass needle where the cell aligns and swims parallel to magnetic field lines. MTB are found in almost all types of aquatic environments, where they can account for an important part of the bacterial biomass. The genes responsible for magnetosome biomineralization are organized as clusters in the genomes of MTB, in some as a magnetosome genomic island. The functions of a number of magnetosome genes and their associated proteins in magnetosome synthesis and construction of the magnetosome chain have now been elucidated. The origin of magnetotaxis appears to be monophyletic; that is, it developed in a common ancestor to all MTB, although horizontal gene transfer of magnetosome genes also appears to play a role in their distribution. The purpose of this review, based on recent progress in this field, is focused on the diversity and the ecology of the MTB and also the evolution and transfer of the molecular determinants involved in magnetosome formation.

read more

Citations
More filters
Journal ArticleDOI

Identification and Genomic Characterization of Two Previously Unknown Magnetotactic Nitrospirae.

TL;DR: In this paper, the authors identify and characterize two previously unknown magnetotactic bacteria (MTB) populations within the Nitrospirae phylum through a combination of 16S rRNA gene-based and genome-resolved metagenomic analyses.
Journal ArticleDOI

OxyR controls magnetosome formation by regulating magnetosome island (MAI) genes, iron metabolism, and redox state.

TL;DR: Findings indicate that OxyR-4250 helps maintain a proper redox environment for magnetosome formation by eliminating excess ROS, regulating iron homeostasis and participating in regulation of Fe2+/Fe3+ ratio within the magnetosomes vesicle through regulating MAI genes.
Posted ContentDOI

Detection of interphylum transfers of the magnetosome gene cluster in magnetotactic bacteria

TL;DR: It is demonstrated that the last common ancestor of all Nitrospirota was most likely not magnetotactic as assumed previously and the results imply a more significant role of HGT in the MTB evolution than deemed before and challenge the hypothesis of the ancient origin of magnetosome synthesis.
Journal ArticleDOI

Thrust and Power Output of the Bacterial Flagellar Motor: A Micromagnetic Tweezers Approach

TL;DR: By noninvasively measuring thrust, velocity, and power output over time at a single-cell level, this technique can serve as the foundation for fundamental studies of bacterial hydrodynamics and also provides a novel, to the authors' knowledge, tether-free probe of single- cell energetics over time.
Journal ArticleDOI

Intracellular silicification by early-branching magnetotactic bacteria

TL;DR: A previously unidentified magnetotactic bacterium that forms intracellular, amorphous silica globules is reported that suggests a previously unrecognized influence on the biogeochemical Si cycle that was operational during early Earth history.
References
More filters
Journal ArticleDOI

Oxidative mechanisms in the toxicity of metal ions

TL;DR: Some mechanisms associated with the toxicities of metal ions are very similar to the effects produced by many organic xenobiotics, related to differences in solubilities, absorbability, transport, chemical reactions, and the complexes that are formed within the body.
Journal ArticleDOI

A marine microbial consortium apparently mediating anaerobic oxidation of methane

TL;DR: In this article, the authors provide microscopic evidence for a structured consortium of archaea and sulphate-reducing bacteria, which are identified by fluorescence in situ hybridization using specific 16S rRNA-targeted oligonucleotide probes.
Journal ArticleDOI

Siderophores: Structure and Function of Microbial Iron Transport Compounds

TL;DR: Overproduction of the siderophore and its transport system at low iron is in this species well established to be the result of negative transcriptional repression, but the detailed mechanism may be positive in other organisms.
Journal ArticleDOI

Electronic Conduction of Magnetite (Fe 3 O 4 ) and its Transition Point at Low Temperatures

E. J. W. Verwey
- 01 Aug 1939 - 
TL;DR: In this paper, the authors measured the electronic conductivity of a number of iron oxides of the homogeneous "Fe3O4" phase, especially as a function of the exact stoichiometrie composition of the material.
Journal ArticleDOI

Magnetosome formation in prokaryotes

TL;DR: Progress has been made in elucidating the molecular, biochemical, chemical and genetic bases of magnetosome formation and understanding how these unique intracellular organelles function.
Related Papers (5)