scispace - formally typeset
Open AccessJournal ArticleDOI

Energy dissipation and transport in nanoscale devices

Eric Pop
- 18 Mar 2010 - 
- Vol. 3, Iss: 3, pp 147-169
Reads0
Chats0
TLDR
In this article, the authors present recent progress in understanding and manipulation of energy dissipation and transport in nanoscale solid-state structures, including silicon transistors, carbon nanostructures, and semiconductor nanowires.
Abstract
Understanding energy dissipation and transport in nanoscale structures is of great importance for the design of energy-efficient circuits and energy-conversion systems. This is also a rich domain for fundamental discoveries at the intersection of electron, lattice (phonon), and optical (photon) interactions. This review presents recent progress in understanding and manipulation of energy dissipation and transport in nanoscale solid-state structures. First, the landscape of power usage from nanoscale transistors (∼10−8 W) to massive data centers (∼109 W) is surveyed. Then, focus is given to energy dissipation in nanoscale circuits, silicon transistors, carbon nanostructures, and semiconductor nanowires. Concepts of steady-state and transient thermal transport are also reviewed in the context of nanoscale devices with sub-nanosecond switching times. Finally, recent directions regarding energy transport are reviewed, including electrical and thermal conductivity of nanostructures, thermal rectification, and the role of ubiquitous material interfaces. Open image in new window

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Colloquium : Phononics: Manipulating heat flow with electronic analogs and beyond

TL;DR: In this article, a toolkit of familiar electronic analogs for use of phononics is put forward, i.e., phononic devices are described which act as thermal diodes, thermal transistors, thermal logic gates, and thermal memories.
Journal ArticleDOI

Thermal properties of graphene: Fundamentals and applications

TL;DR: Graphene is a two-dimensional (2D) material with over 100-fold anisotropy of heat flow between the in-plane and out-of-plane directions as mentioned in this paper.
Journal ArticleDOI

Perspectives on thermoelectrics: from fundamentals to device applications

TL;DR: In this article, Minnich et al. reviewed the progress made in thermoelectrics over the past two years on charge and heat carrier transport, strategies to improve the thermiolectric figure of merit, with new discussions on device physics and applications.
Journal ArticleDOI

Experimental verification of Landauer’s principle linking information and thermodynamics

TL;DR: It is established that the mean dissipated heat saturates at the Landauer bound in the limit of long erasure cycles, demonstrating the intimate link between information theory and thermodynamics and highlighting the ultimate physical limit of irreversible computation.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

Helical microtubules of graphitic carbon

Sumio Iijima
- 01 Nov 1991 - 
TL;DR: Iijima et al. as mentioned in this paper reported the preparation of a new type of finite carbon structure consisting of needle-like tubes, which were produced using an arc-discharge evaporation method similar to that used for fullerene synthesis.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

The electronic properties of graphene

TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Book

Electronic transport in mesoscopic systems

TL;DR: In this article, preliminary concepts of conductance from transmission, S-matrix and Green's function formalism are discussed. And double-barrier tunnelling is considered.
Related Papers (5)