scispace - formally typeset
Open AccessJournal ArticleDOI

Exploring What Lies Ahead in the Field of Disinfecting Coronavirus

Djamel Ghernaout, +1 more
- 06 May 2021 - 
- Vol. 8, Iss: 05, pp 1-21
TLDR
SARS-CoV-2 is distinguished by a weak construction and is vulnerable to traditional disinfection technologies that have been demonstrated to be very efficient in their neutralization, but remains vulnerable to sunlight and quickly demobilized by UV radiation.
Abstract
Recently, huge awareness has been accorded to potential circulation of SARS- CoV-2 through water systems. This work deals with this problem and researches the behavior of coronaviruses (CoVs) in water media, with specific interest on the new data on the fresh SARS-CoV-2. The examination of the natural persistence of CoVs and the performance of the disinfection technologies are also discussed. All CoVs have a restricted stability in water media: 2 - 5 days in tap water and 2 - 6 days in wastewater were judged enough for 2-log reduction of SARS-CoV-2 titer. SARS-CoV-2 is distinguished by a weak construction and is vulnerable to traditional disinfection technologies that have been demonstrated to be very efficient in their neutralization. Approximately 5 min of exposure to sodium hypochlorite (1%), ethanol (70%), iodine (7.5%), soap solution and additional usual disinfectants was enough for reaching 7 - 8-log of SARS-CoV-2 titer decrease. Thermal treatment is efficacious in SARS-CoV-2 demobilization: 30 min at 56 or 5 min at 70°C were enough for attaining the total depletion of the infectivity. Further, SARS-CoV-2 remains vulnerable to sunlight and quickly demobilized by UV radiation. UV-C at 254 nm and intensity of 2.2 mW/cm2 yields 3-log of SARS-CoV-2 titer decrease in less than 3 s of application. Consequently for SARS-CoV-2 disinfection, usual injections of killing agents remain required for sanitation and for wastewater treatment. Relating to controlling CoVs diffusion and applying disinfection technologies, vigilance remains essential.

read more

References
More filters
Journal ArticleDOI

A pneumonia outbreak associated with a new coronavirus of probable bat origin

TL;DR: Identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China, and it is shown that this virus belongs to the species of SARSr-CoV, indicates that the virus is related to a bat coronav virus.
Journal ArticleDOI

Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation.

TL;DR: The authors show that this protein binds at least 10 times more tightly than the corresponding spike protein of severe acute respiratory syndrome (SARS)–CoV to their common host cell receptor, and test several published SARS-CoV RBD-specific monoclonal antibodies found that they do not have appreciable binding to 2019-nCoV S, suggesting that antibody cross-reactivity may be limited between the two RBDs.
Journal ArticleDOI

Origin and evolution of pathogenic coronaviruses

TL;DR: The viral factors that enabled the emergence of diseases such as severe acute respiratory syndrome and Middle East respiratory syndrome are explored and the diversity and potential of bat-borne coronaviruses are highlighted.
Journal ArticleDOI

The proximal origin of SARS-CoV-2.

TL;DR: It is shown that SARS-CoV-2 is not a laboratory construct or a purposefully manipulated virus, and scenarios by which they could have arisen are discussed.
Related Papers (5)