scispace - formally typeset
Open AccessJournal ArticleDOI

Glucose-6-phosphate dehydrogenase, NADPH, and cell survival

TLDR
It is now clear that G6PD is under complex regulatory control and of central importance to many cellular processes.
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme of the pentose phosphate pathway. Many scientists think that the roles and regulation of G6PD in physiology and pathophysiology have been well established as the enzyme was first identified 80 years ago. And that G6PD has been extensively studied especially with respect to G6PD deficiency and its association with hemolysis, and with respect to the role G6PD plays in lipid metabolism. But there has been a growing understanding of the central importance of G6PD to cellular physiology as it is a major source of NADPH that is required by many essential cellular systems including the antioxidant pathways, nitric oxide synthase, NADPH oxidase, cytochrome p450 system, and others. Indeed G6PD is essential for cell survival. It has also become evident that G6PD is highly regulated by many signals that affect transcription, post-translation, intracellular location, and interactions with other protein. Pathophysiologic roles for G6PD have also been identified in such disease processes as diabetes, aldosterone-induced endothelial dysfunction, cancer, and others. It is now clear that G6PD is under complex regulatory control and of central importance to many cellular processes. In this review the biochemistry, regulatory signals, physiologic roles, and pathophysiologic roles for G6PD that have been elucidated over the past 20 years are discussed.

read more

Citations
More filters
Journal ArticleDOI

ROS Generation and Antioxidant Defense Systems in Normal and Malignant Cells

TL;DR: This review covers the current data on the mechanisms of ROS generation and existing antioxidant systems balancing the redox state in mammalian cells that can also be related to tumors.
Journal ArticleDOI

Regulation of the pentose phosphate pathway in cancer

TL;DR: A better understanding of how the PPP is reprogrammed and the mechanism underlying the balance between glycolysis and PPP flux in cancer will be valuable in developing therapeutic strategies targeting this pathway.
References
More filters
Journal ArticleDOI

TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis

TL;DR: expression of TIGAR may modulate the apoptotic response to p53, allowing survival in the face of mild or transient stress signals that may be reversed or repaired, and the decrease of intracellular ROS levels in response to TIGar may also play a role in the ability of p53 to protect from the accumulation of genomic damage.
Journal ArticleDOI

Activation of a Metabolic Gene Regulatory Network Downstream of mTOR Complex 1

TL;DR: It is demonstrated that mTORC1 activation is sufficient to stimulate specific metabolic pathways, including glycolysis, the oxidative arm of the pentose phosphate pathway, and de novo lipid biosynthesis, through the activation of a transcriptional program affecting metabolic gene targets of hypoxia-inducible factor and sterol regulatory element-binding protein.

Activation of a Metabolic Gene Regulatory Network Downstream of mTOR Complex 1

Abstract: Aberrant activation of the mammalian target of rapamycin complex 1 (mTORC1) is a common molecular event in a variety of pathological settings, including genetic tumor syndromes, cancer, and obesity. However, the cell-intrinsic consequences of mTORC1 activation remain poorly defined. Through a combination of unbiased genomic, metabolomic, and bioinformatic approaches, we demonstrate that mTORC1 activation is sufficient to stimulate specific metabolic pathways, including glycolysis, the oxidative arm of the pentose phosphate pathway, and de novo lipid biosynthesis. This is achieved through the activation of a transcriptional program affecting metabolic gene targets of hypoxia-inducible factor (HIF1alpha) and sterol regulatory element-binding protein (SREBP1 and SREBP2). We find that SREBP1 and 2 promote proliferation downstream of mTORC1, and the activation of these transcription factors is mediated by S6K1. Therefore, in addition to promoting protein synthesis, mTORC1 activates specific bioenergetic and anabolic cellular processes that are likely to contribute to human physiology and disease.
Book ChapterDOI

Glucose-6-phosphate Dehydrogenase

TL;DR: G6P-DH is inhibited by primaquine and other 8-aminoquinolines (antimalarial drugs) in millimolar concentration, as well as by phenylhydrazine, Nevertheless, the therapeutic concentration of these substances is more than tenfold lower and therefore, they have no significant effect on the measurements.
Journal ArticleDOI

Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling.

TL;DR: One of the subunits of the phagocyte NAD PH oxidase is now recognized as a member of a family of NADPH oxidases, or NOX, present in cells other than phagocytes, present at the plasma membrane from resident plasma membrane and cytosolic protein components.
Related Papers (5)