scispace - formally typeset
Open AccessJournal ArticleDOI

Graphene: Status and Prospects

Andre K. Geim
- 19 Jun 2009 - 
- Vol. 324, Iss: 5934, pp 1530-1534
Reads0
Chats0
TLDR
This review analyzes recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.
Abstract
Graphene is a wonder material with many superlatives to its name. It is the thinnest known material in the universe and the strongest ever measured. Its charge carriers exhibit giant intrinsic mobility, have zero effective mass, and can travel for micrometers without scattering at room temperature. Graphene can sustain current densities six orders of magnitude higher than that of copper, shows record thermal conductivity and stiffness, is impermeable to gases, and reconciles such conflicting qualities as brittleness and ductility. Electron transport in graphene is described by a Dirac-like equation, which allows the investigation of relativistic quantum phenomena in a benchtop experiment. This review analyzes recent trends in graphene research and applications, and attempts to identify future directions in which the field is likely to develop.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Graphene and graphene oxide and their uses in barrier polymers

TL;DR: A review of the state-of-the-art research on the use of graphene, GO, and rGO for barrier applications, including few-layered graphene or its derivatives in coated polymeric films and polymer nanocomposites consisting of chemically exfoliated GO and reduced graphene oxide (rGO) nanosheets, and their gas-barrier properties is presented in this article.
Journal ArticleDOI

Graphene and Nanowire Transistors for Cellular Interfaces and Electrical Recording

TL;DR: The first studies of graphene field effect transistors (Gra-FETs) as well as combined Gra- and NW-Fets interfaced to electrogenic cells are reported, indicating a robust graphene/cell interface and limits in both temporal resolution and multiplexed measurements from the same cell for the different types of devices.
Journal ArticleDOI

Preparation of MoS2‐Polyvinylpyrrolidone Nanocomposites for Flexible Nonvolatile Rewritable Memory Devices with Reduced Graphene Oxide Electrodes

TL;DR: Experimental results prove that the electrical transition is due to the charge trapping and detrapping behavior of MoS2 in the PVP dielectric material, paving a way of employing two-dimensional nanomaterials as both functional materials and conducting electrodes for the future flexible data storage.
Journal ArticleDOI

Preparation of Gold Nanoparticle/Graphene Composites with Controlled Weight Contents and Their Application in Biosensors

TL;DR: In this article, positively charged gold nanoparticles (GNPs) with diameters of 2−6 nm were self-assembled onto the surfaces of 1-pyrene butyric acid functionalized graphene (PFG) sheets simply by mixing their aqueous dispersions.
Journal ArticleDOI

Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles.

TL;DR: A facile approach to multifunctional iron oxide nanoparticle-attached graphene nanosheets (graphene@Fe(3)O(4)) which show the integrated properties of strong supraparamagnetism, electrical conductivity, highly chemical reactivity, good solubility, and excellent processability is reported.
References
More filters
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

The electronic properties of graphene

TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Journal ArticleDOI

Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene

TL;DR: Graphene is established as the strongest material ever measured, and atomically perfect nanoscale materials can be mechanically tested to deformations well beyond the linear regime.
Journal ArticleDOI

Superior Thermal Conductivity of Single-Layer Graphene

TL;DR: The extremely high value of the thermal conductivity suggests that graphene can outperform carbon nanotubes in heat conduction and establishes graphene as an excellent material for thermal management.
Journal ArticleDOI

Large-scale pattern growth of graphene films for stretchable transparent electrodes

TL;DR: The direct synthesis of large-scale graphene films using chemical vapour deposition on thin nickel layers is reported, and two different methods of patterning the films and transferring them to arbitrary substrates are presented, implying that the quality of graphene grown by chemical vapours is as high as mechanically cleaved graphene.
Related Papers (5)