scispace - formally typeset
Open AccessJournal ArticleDOI

High-redshift galaxies in the hubble deep field : colour selection and star formation history to z 4

Reads0
Chats0
TLDR
In this paper, a sample of star-forming galaxies at 2 ≲z ≲ 4.5 was constructed from the Hubble Deep Field (HDF) images, which is 3 times higher than the local value but still 4 times lower than the rate observed at z ≈ 1.75.
Abstract
The Lyman decrement associated with the cumulative effect of H I in QSO absorption systems along the line of sight provides a distinctive feature for identifying galaxies at z ≳ 2.5. Colour criteria, which are sensitive to the presence of a Lyman continuum break superposed on an otherwise flat UV spectrum, have been shown, through Keck spectroscopy, to successfully identify a substantial population of star-forming galaxies at 3 ≲ z ≲ 3.5. Such objects have proven to be surprisingly elusive in field galaxy redshift surveys; quantification of their surface densities and morphologies is crucial for determining how and when galaxies formed. The Hubble Deep Field (HDF) observations offer the opportunity to exploit the ubiquitous effect of intergalactic absorption and obtain useful statistical constraints on the redshift distribution of galaxies to considerably fainter limits than the current spectroscopic limits. We model the H I cosmic opacity as a function of redshift, including scattering in resonant lines of the Lyman series and Lyman continuum absorption, and use stellar population synthesis models with a wide variety of ages, metallicities, dust contents and redshifts to derive colour selection criteria that provide a robust separation between high-redshift and low-redshift galaxies. From the HDF images we construct a sample of star-forming galaxies at 2 ≲z ≲ 4.5. While none of the ∼ 60 objects in the HDF having known Keck/Low-Resolution Imaging Spectrograph (LRIS) spectroscopic redshifts in the range 0 ≲ z ≲1.4 is found to contaminate our high-redshift sample, our colour criteria are able to efficiently select the 2.6 ≲ z ≲ 3.2 galaxies identified by Steidel et al. The ultraviolet (and blue) dropout technique opens up the possibility of investigating cosmic star and element formation in the early Universe. We set a lower limit to the ejection rate of heavy elements per unit comoving volume from Type II supernovae at 〈z〉 = 2.75 of ≈ 3.6 × 10^(−4) M_⊙ yr^(−1) Mpc^(−3) (for q_0 = 0.5 and H_0 = 50 km s^(−1) Mpc^(−1)), which is 3 times higher than the local value but still 4 times lower than the rate observed at z ≈ 1. At 〈z〉 = 4, our lower limit to the cosmic metal ejection rate is ≈ 3 times lower than the 〈z〉 = 2.75 value. We discuss the implications of these results on models of galaxy formation, and on the chemical enrichment and ionization history of the intergalactic medium.

read more

Citations
More filters
Journal ArticleDOI

Star formation in galaxies along the hubble sequence

TL;DR: In this article, the authors focus on the broad patterns in the star formation properties of galaxies along the Hubble sequence and their implications for understanding galaxy evolution and the physical processes that drive the evolution.
Journal ArticleDOI

The Swift Gamma-Ray Burst Mission

Neil Gehrels, +77 more
TL;DR: The Swift mission as discussed by the authors is a multi-wavelength observatory for gamma-ray burst (GRB) astronomy, which is a first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions.
Journal ArticleDOI

The physical properties of star-forming galaxies in the low-redshift universe

TL;DR: In this article, the authors present a comprehensive study of the physical properties of ∼ 10 5 galaxies with measurable star formation in the Sloan Digital Sky Survey (SDSS) by comparing physical information extracted from the emission lines with continuum properties, and build up a picture of the nature of star-forming galaxies at z < 0.2.
Journal ArticleDOI

Cosmic Star-Formation History

TL;DR: In this article, the authors review the range of complementary techniques and theoretical tools that allow astronomers to map the cosmic history of star formation, heavy element production, and reionization of the Universe from the cosmic "dark ages" to the present epoch.
References
More filters
Book

Astrophysics of Gaseous Nebulae and Active Galactic Nuclei

TL;DR: In this paper, a comparison of theory with observations internal dynamics of gaseous nebulae interstellar dust H II regions in the galactic context is presented. But the results are limited to the case of active galactic nuclei.
Journal ArticleDOI

Stellar populations in galaxies

TL;DR: In this article, stellar populations in the galaxy, the Magellanic Clouds, M31 and its companions, globular clusters, and dwarf spheroidal galaxies are examined and the evolution of elliptical galaxies and the missing mass in galaxy halos and in clusters of galaxies are also discussed.
Related Papers (5)