scispace - formally typeset
Journal ArticleDOI

High-temperature ultrafast polariton parametric amplification in semiconductor microcavities.

TLDR
105 polaritons occupy the same quantum state during the amplification, realizing a dynamical condensate of strongly interacting bosons which can be studied at high temperature and could be exploited for high-repetition all-optical microscopic switches and amplifiers.
Abstract
Cavity polaritons, the elementary optical excitations of semiconductor microcavities, may be understood as a superposition of excitons and cavity photons1. Owing to their composite nature, these bosonic particles have a distinct optical response, at the same time very fast and highly nonlinear. Very efficient light amplification due to polariton–polariton parametric scattering has recently been reported in semiconductor microcavities at liquid-helium temperatures2,3,4,5,6,7,8,9,10,11. Here we demonstrate polariton parametric amplification up to 120 K in GaAlAs-based microcavities and up to 220 K in CdTe-based microcavities. We show that the cut-off temperature for the amplification is ultimately determined by the binding energy of the exciton. A 5-µm-thick planar microcavity can amplify a weak light pulse more than 5,000 times. The effective gain coefficient of an equivalent homogeneous medium would be 107 cm-1. The subpicosecond duration and high efficiency of the amplification could be exploited for high-repetition all-optical microscopic switches and amplifiers. 105 polaritons occupy the same quantum state during the amplification, realizing a dynamical condensate of strongly interacting bosons which can be studied at high temperature.

read more

Citations
More filters
Journal ArticleDOI

Quantum fluids of light

TL;DR: In this paper, a review of recent theoretical and experimental advances in the fundamental understanding and active control of quantum fluids of light in nonlinear optical systems is presented, from the superfluid flow around a defect at low speeds to the appearance of a Mach-Cherenkov cone in a supersonic flow, to the hydrodynamic formation of topological excitations such as quantized vortices and dark solitons at the surface of large impenetrable obstacles.
Journal ArticleDOI

Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser*

TL;DR: In this paper, the authors describe the discovery and study of BoseEinstein condensates (BECs) in atomic gases from a personal perspective, and describe how they were used to explore quantum-degenerate gases, such as BECs first realized in 1995.
Journal ArticleDOI

Condensation of Semiconductor Microcavity Exciton Polaritons

TL;DR: A phase transition from a classical thermal mixed state to a quantum-mechanical pure state of exciton polaritons is observed in a GaAs multiple quantum-well microcavity from the decrease of the second-order coherence function.
Journal ArticleDOI

Collective fluid dynamics of a polariton condensate in a semiconductor microcavity

TL;DR: Using a coherent excitation triggered by a short optical pulse, a macroscopically degenerate state of polaritons are created that can be made to collide with a variety of defects present in the microcavity and opens the way to the investigation of new phenomenology of out-of-equilibrium condensates.
References
More filters
Journal ArticleDOI

Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity.

TL;DR: The spectral response of a monolithic semiconductor quantum microcavity with quantum wells as the active medium displays mode splitting when the quantum wells and the optical cavity are in resonance.
Journal ArticleDOI

Gan : processing, defects, and devices

TL;DR: The role of extended and point defects, and key impurities such as C, O, and H, on the electrical and optical properties of GaN is reviewed in this article, along with the influence of process-induced or grown-in defects and impurities on the device physics.
Journal ArticleDOI

Nitride-based semiconductors for blue and green light-emitting devices

Fernando Ponce, +1 more
- 27 Mar 1997 - 
TL;DR: In this article, the group III elements of the semiconducting nitrides have been used for the fabrication of high-efficiency solid-state devices that emit green and blue light.
Journal ArticleDOI

Strong exciton–photon coupling in an organic semiconductor microcavity

TL;DR: In this article, an organic semiconductor microcavity that operates in the strong-coupling regime was shown to have characteristic mixing of the exciton and photon modes (anti-crossing), and a room-temperature vacuum Rabi splitting.
Journal ArticleDOI

Angle-resonant stimulated polariton amplifier

TL;DR: This work experimentally demonstrates resonant coupling between photons and excitons in microcavities which can efficiently generate enormous single-pass optical gains approaching 100 and utilizes boson amplification induced by stimulated energy relaxation.
Related Papers (5)