scispace - formally typeset
Open AccessJournal ArticleDOI

Hyperaccumulators of metal and metalloid trace elements: Facts and fiction

Reads0
Chats0
Abstract
Plants that accumulate metal and metalloid trace elements to extraordinarily high concentrations in their living biomass have inspired much research worldwide during the last decades. Hyperaccumulators have been recorded and experimentally confirmed for elements such as nickel, zinc, cadmium, manganese, arsenic and selenium. However, to date, hyperaccumulation of lead, copper, cobalt, chromium and thallium remain largely unconfirmed. Recent uses of the term in relation to rare-earth elements require critical evaluation. Since the mid-1970s the term ‘hyperaccumulator’ has been used millions of times by thousands of people, with varying degrees of precision, aptness and understanding that have not always corresponded with the views of the originators of the terminology and of the present authors. There is therefore a need to clarify the circumstances in which the term ‘hyperaccumulator’ is appropriate and to set out the conditions that should be met when the terms are used. We outline here the main considerations for establishing metal or metalloid hyperaccumulation status of plants, (re)define some of the terminology and note potential pitfalls. Unambiguous communication will require the international scientific community to adopt standard terminology and methods for confirming the reliability of analytical data in relation to metal and metalloid hyperaccumulators.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Switchable Alkene Epoxidation/Oxidative Cleavage with H2O2/NaHCO3: Efficient Heterogeneous Catalysis Derived from Biosourced Eco-Mn

TL;DR: In this paper, a plant-based catalyst Eco-Mn was proposed for styrene epoxidation with only 0.31 mol % Mn, a much lower content of Mn than in previous studies.
Book ChapterDOI

Global Distribution and Ecology of Hyperaccumulator Plants

TL;DR: These plants, now widely referred to as hyperaccumulators, are a remarkable resource for many types of fundamental scientific investigation (plant systematics, ecophysiology, biochemistry, genetics, and molecular biology) and for applications such as phytoremediation and agromining, and are discussed in detail below.
Book ChapterDOI

Phytoremediation and Phytomining: Status and Promise

TL;DR: In this paper, the authors used the biochemistry and genetic mechanisms used by high biomass element hyperaccumulator plants for soil remediation in all climatic zones, and showed that high biomass elements can be constructed for soil removal.
Journal ArticleDOI

Phytoextraction of high value elements and contaminants from mining and mineral wastes: opportunities and limitations

TL;DR: In this article, the main considerations for applying phytoextraction using selected elemental case studies in which key characteristics of the element, hyperaccumulation and economic considerations are evaluated.
Journal ArticleDOI

Application of Simplicillium chinense for Cd and Pb biosorption and enhancing heavy metal phytoremediation of soils

TL;DR: The mechanisms of S. chinense QD10 in Cd and Pb biosorption were explored and its potential in ameliorating the phytoremediation performance at metal contaminated sites was proved.
References
More filters

Terrestrial higher plants which hyperaccumulate metallic elements. a review of their distribution, ecology and phytochemistry

TL;DR: Phytochemical studies suggest that hyperaccumulation is closely linked to the mechanism of metal tolerance involved in the successful colonization of metalliferous and otherwise phytotoxic soils.
Journal ArticleDOI

Accumulators and excluders ?strategies in the response of plants to heavy metals

TL;DR: In this paper, two basic strategies of plant response are suggested, accumulators and excluders, which do not generally suppress metal uptake but result in internal detoxification, and indicators are seen as a further mode of response where proportional relationships exist between metal levels in the soil, uptake and accumulation in plant parts.
Journal ArticleDOI

A fern that hyperaccumulates arsenic

TL;DR: A hardy, versatile, fast-growing plant that helps to remove arsenic from contaminated soils.
Journal ArticleDOI

Zinc in plants

TL;DR: The dominant fluxes of Zn in the soil-root-shoot continuum are described, including Zn inputs to soils, the plant availability of soluble Zn(2+) at the root surface, and plant uptake and accumulation of ZN.
Book

Phytoremediation of toxic metals : using plants to clean up the environment

TL;DR: Why Use Phytoremediation?
Related Papers (5)
Trending Questions (1)
Hyperaccumulators for copper?

Hyperaccumulation of copper remains largely unconfirmed.