scispace - formally typeset
Open AccessJournal ArticleDOI

Hyperaccumulators of metal and metalloid trace elements: Facts and fiction

Reads0
Chats0
Abstract
Plants that accumulate metal and metalloid trace elements to extraordinarily high concentrations in their living biomass have inspired much research worldwide during the last decades. Hyperaccumulators have been recorded and experimentally confirmed for elements such as nickel, zinc, cadmium, manganese, arsenic and selenium. However, to date, hyperaccumulation of lead, copper, cobalt, chromium and thallium remain largely unconfirmed. Recent uses of the term in relation to rare-earth elements require critical evaluation. Since the mid-1970s the term ‘hyperaccumulator’ has been used millions of times by thousands of people, with varying degrees of precision, aptness and understanding that have not always corresponded with the views of the originators of the terminology and of the present authors. There is therefore a need to clarify the circumstances in which the term ‘hyperaccumulator’ is appropriate and to set out the conditions that should be met when the terms are used. We outline here the main considerations for establishing metal or metalloid hyperaccumulation status of plants, (re)define some of the terminology and note potential pitfalls. Unambiguous communication will require the international scientific community to adopt standard terminology and methods for confirming the reliability of analytical data in relation to metal and metalloid hyperaccumulators.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Relationships between serpentine soils and vegetation in a xeric inner-Alpine environment

TL;DR: In this paper, the authors evaluated the environment-soil-vegetation relationships in a xeric inner-alpine area (NW Italy), where the inhibited pedogenesis should enhance parent material influences on vegetation.
Journal ArticleDOI

High-potential accumulation and tolerance in the submerged hydrophyte Hydrilla verticillata (L.f.) Royle for nickel-contaminated water

TL;DR: Hydrilla verticillata could be a "high-potential accumulator" capable of decontaminating aquatic bodies polluted by Ni within the threshold range, and this research investigated the biochemical responses of leaves and stems to various concentrations of Ni over periods of 7, 14, or 21 days.
Journal ArticleDOI

Essential and toxic element concentrations in Hypericum perforatum

TL;DR: The element concentrations found in this medicinal plant show that people should be careful when collecting it from serpentine sites and using it for medication.
Journal ArticleDOI

Assessing Soil Metal Levels in an Industrial Environment of Northwestern China and the Phytoremediation Potential of Its Native Plants

TL;DR: Wang et al. as discussed by the authors evaluated the soil quality of industrial areas and identified the potential phytoremediator from the native plant species, and collected 45 surface soil samples and 21 plant species in a typical industrial area of northwestern China.
References
More filters

Terrestrial higher plants which hyperaccumulate metallic elements. a review of their distribution, ecology and phytochemistry

TL;DR: Phytochemical studies suggest that hyperaccumulation is closely linked to the mechanism of metal tolerance involved in the successful colonization of metalliferous and otherwise phytotoxic soils.
Journal ArticleDOI

Accumulators and excluders ?strategies in the response of plants to heavy metals

TL;DR: In this paper, two basic strategies of plant response are suggested, accumulators and excluders, which do not generally suppress metal uptake but result in internal detoxification, and indicators are seen as a further mode of response where proportional relationships exist between metal levels in the soil, uptake and accumulation in plant parts.
Journal ArticleDOI

A fern that hyperaccumulates arsenic

TL;DR: A hardy, versatile, fast-growing plant that helps to remove arsenic from contaminated soils.
Journal ArticleDOI

Zinc in plants

TL;DR: The dominant fluxes of Zn in the soil-root-shoot continuum are described, including Zn inputs to soils, the plant availability of soluble Zn(2+) at the root surface, and plant uptake and accumulation of ZN.
Book

Phytoremediation of toxic metals : using plants to clean up the environment

TL;DR: Why Use Phytoremediation?
Related Papers (5)
Trending Questions (1)
Hyperaccumulators for copper?

Hyperaccumulation of copper remains largely unconfirmed.