scispace - formally typeset
Open AccessJournal ArticleDOI

In Silico Designing and Analysis of Inhibitors against Target Protein Identified through Host-Pathogen Protein Interactions in Malaria.

Reads0
Chats0
TLDR
A complete protein-protein interaction network of human host and Plasmodium falciparum has been generated by integration of the experimental data and computationally predicting interactions using the interolog method.
Abstract
Malaria, a life-threatening blood disease, has been a major concern in the field of healthcare. One of the severe forms of malaria is caused by the parasite Plasmodium falciparum which is initiated through protein interactions of pathogen with the host proteins. It is essential to analyse the protein-protein interactions among the host and pathogen for better understanding of the process and characterizing specific molecular mechanisms involved in pathogen persistence and survival. In this study, a complete protein-protein interaction network of human host and Plasmodium falciparum has been generated by integration of the experimental data and computationally predicting interactions using the interolog method. The interacting proteins were filtered according to their biological significance and functional roles. α-tubulin was identified as a potential protein target and inhibitors were designed against it by modification of amiprophos methyl. Docking and binding affinity analysis showed two modified inhibitors exhibiting better docking scores of −10.5 kcal/mol and −10.43 kcal/mol and an improved binding affinity of −83.80 kJ/mol and −98.16 kJ/mol with the target. These inhibitors can further be tested and validated in vivo for their properties as an antimalarial drug.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book ChapterDOI

Drug Design for Malaria with Artificial Intelligence (AI)

TL;DR: This chapter provides a comprehensive overview of a road map for several AI based computational techniques which can be implemented in a malaria drugs discovery program.
References
More filters
Journal ArticleDOI

Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.

TL;DR: By following this protocol, investigators are able to gain an in-depth understanding of the biological themes in lists of genes that are enriched in genome-scale studies.
Journal ArticleDOI

Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists

TL;DR: The survey will help tool designers/developers and experienced end users understand the underlying algorithms and pertinent details of particular tool categories/tools, enabling them to make the best choices for their particular research interests.
Journal ArticleDOI

Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy.

TL;DR: Glide approximates a complete systematic search of the conformational, orientational, and positional space of the docked ligand to find the best docked pose using a model energy function that combines empirical and force-field-based terms.
Journal ArticleDOI

A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae

TL;DR: Examination of large-scale yeast two-hybrid screens reveals interactions that place functionally unclassified proteins in a biological context, interactions between proteins involved in the same biological function, and interactions that link biological functions together into larger cellular processes.
Journal ArticleDOI

Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening.

TL;DR: Comparisons to results for the thymidine kinase and estrogen receptors published by Rognan and co-workers show that Glide 2.5 performs better than GOLD 1.1, FlexX 1.8, or DOCK 4.01.
Related Papers (5)