scispace - formally typeset
Open AccessJournal ArticleDOI

Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing

Reads0
Chats0
TLDR
Six functional inks are designed, based on piezo-resistive, high conductance, and biocompatible soft materials that enable integration of soft strain gauge sensors within micro-architectures that guide the self-assembly of physio-mimetic laminar cardiac tissues via multi-material 3D printing.
Abstract
Biomedical research has relied on animal studies and conventional cell cultures for decades. Recently, microphysiological systems (MPS), also known as organs-on-chips, that recapitulate the structure and function of native tissues in vitro, have emerged as a promising alternative. However, current MPS typically lack integrated sensors and their fabrication requires multi-step lithographic processes. Here, we introduce a facile route for fabricating a new class of instrumented cardiac microphysiological devices via multimaterial three-dimensional (3D) printing. Specifically, we designed six functional inks, based on piezo-resistive, high-conductance, and biocompatible soft materials that enable integration of soft strain gauge sensors within micro-architectures that guide the self-assembly of physio-mimetic laminar cardiac tissues. We validated that these embedded sensors provide non-invasive, electronic readouts of tissue contractile stresses inside cell incubator environments. We further applied these devices to study drug responses, as well as the contractile development of human stem cell-derived laminar cardiac tissues over four weeks.

read more

Citations
More filters
Journal ArticleDOI

Intense pulsed light sintering of thick conductive wires on elastomeric dark substrate for hybrid 3D printing applications

TL;DR: In this article, a multi-cycle IPL sintering method that alternates between light exposure cycle and cooling cycle was used to sinter silver nanoparticle (NP) ink on a commercial 3D printed elastomeric dark material.
Journal ArticleDOI

Modulating the percolation network of polymer nanocomposites for flexible sensors

TL;DR: In this article, the authors focus on the current achievements of conductive polymer composites with three bottle-up micro/nano-conductive network structures based on the fundamental tunneling percolation theory and their potentialities and drawbacks for tactile sensor applications.
Journal ArticleDOI

Emerging Anti-Fouling Methods: Towards Reusability of 3D-Printed Devices for Biomedical Applications.

TL;DR: Traditional and emerging approaches to anti-fouling are presented in regard to their applicability to microfluidic chips, with a particular interest in approaches compatible with 3D-printed chips.
Journal ArticleDOI

Patient-Specific Organoid and Organ-on-a-Chip: 3D Cell-Culture Meets 3D Printing and Numerical Simulation.

TL;DR: In this paper, a review describes the comparable distinct differences between these two models and provides more insights into their complementarity and integration to recognize their merits and limitations for applicable fields, as well as expert recommendations and future solutions to address the promising combinations by incorporating organoids, organ-on-a-chip, 3D printing, and numerical simulation.
Journal ArticleDOI

Electrochemical Determination of Bisphenol A in Saliva by a Novel Three-Dimensional (3D) Printed Gold-Reduced Graphene Oxide (rGO) Composite Paste Electrode

TL;DR: In this paper, a novel synthesized gold (Au)-reduced graphene oxide composite (rGO) was used for the fabrication of an electroactive paste inserted in a 3D-printed platform for the determinati...
References
More filters
Journal ArticleDOI

Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes

TL;DR: Transparent, conducting spray-deposited films of single-walled carbon nanotubes are reported that can be rendered stretchable by applying strain along each axis, and then releasing this strain.
Journal ArticleDOI

Microfluidic organs-on-chips

TL;DR: A microfluidic cell culture device created with microchip manufacturing methods that contains continuously perfused chambers inhabited by living cells arranged to simulate tissue- and organ-level physiology has great potential to advance the study of tissue development, organ physiology and disease etiology.
Journal ArticleDOI

Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues

TL;DR: 3D printed rigid filament networks of carbohydrate glass are used as a cytocompatible sacrificial template in engineered tissues containing living cells to generate cylindrical networks which could be lined with endothelial cells and perfused with blood under high-pressure pulsatile flow.
Journal ArticleDOI

Direct ink writing of 3D functional materials

TL;DR: The ability to pattern materials in 3D shapes without the need for expensive tooling, dies, or lithographic masks is critical for composites, microfluidics, photonics, and tissue engineering as discussed by the authors.
Journal ArticleDOI

Three-dimensional bioprinting of thick vascularized tissues.

TL;DR: A multimaterial 3D bioprinting method is reported that enables the creation of thick human tissues (>1 cm) replete with an engineered extracellular matrix, embedded vasculature, and multiple cell types that can be actively perfused for long durations.
Related Papers (5)