scispace - formally typeset
Open Access

Integrative analysis of 111 reference human epigenomes

Reads0
Chats0
TLDR
In this article, the authors describe the integrative analysis of 111 reference human epigenomes generated as part of the NIH Roadmap Epigenomics Consortium, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression.
Abstract
The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

read more

Citations
More filters
Journal ArticleDOI

Predicting mRNA Abundance Directly from Genomic Sequence Using Deep Convolutional Neural Networks.

TL;DR: This model, termed Xpresso, more than doubles the accuracy of alternative sequence-based models and isolates rules as predictive as models relying on chromatic immunoprecipitation sequencing data, and its residuals can be used to quantify the influence of enhancers, heterochromatic domains, and microRNAs.
Journal ArticleDOI

Archaic Adaptive Introgression in TBX15/WARS2

TL;DR: It is reported that selection in the region with the second most extreme signal of positive selection in Greenlandic Inuit favored a deeply divergent haplotype that is closely related to the sequence in the Denisovan genome, and was likely introgressed from an archaic population.
Journal ArticleDOI

PEDLA: predicting enhancers with a deep learning-based algorithmic framework.

TL;DR: This work developed a deep learning-based algorithmic framework named PEDLA, which can directly learn an enhancer predictor from massively heterogeneous data and generalize in ways that are mostly consistent across various cell types/tissues, and demonstrated that PEDla framework integrates diverse heterogeneous features and gives state-of-the-art performance relative to five existing methods for enhancer prediction.
References
More filters
Journal ArticleDOI

Fast and accurate short read alignment with Burrows–Wheeler transform

TL;DR: Burrows-Wheeler Alignment tool (BWA) is implemented, a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps.
Journal ArticleDOI

Gene Ontology: tool for the unification of biology

TL;DR: The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing.
Journal ArticleDOI

Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks

TL;DR: Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.
Journal ArticleDOI

An integrated encyclopedia of DNA elements in the human genome

TL;DR: The Encyclopedia of DNA Elements project provides new insights into the organization and regulation of the authors' genes and genome, and is an expansive resource of functional annotations for biomedical research.
Journal ArticleDOI

Model-based Analysis of ChIP-Seq (MACS)

TL;DR: This work presents Model-based Analysis of ChIP-Seq data, MACS, which analyzes data generated by short read sequencers such as Solexa's Genome Analyzer, and uses a dynamic Poisson distribution to effectively capture local biases in the genome, allowing for more robust predictions.