scispace - formally typeset
Journal ArticleDOI

Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice

TLDR
This study identified cold tolerance phenotype of T1 mutant lines from T0 biallelic mutants using the 4∼6°C for 3 days cold treatment and suggested that OsAnn3 was involved in cold tolerance of rice.
Abstract
Plant annexins are Ca2+-dependent phospholipid-binding proteins and exist as multigene families in plants. They are implicated in the regulation of plant development as well as protection from environmental stresses. In this study, the rice annexin gene OsAnn3 knockout was performed via the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated proteins) mediated genome editing. Thus, mutant plantlets were successfully obtained. We identified cold tolerance phenotype of T1 mutant lines from T0 biallelic mutants using the 4∼6°C for 3 days cold treatment. The results showed that REC (the relative electrical conductivity) of T1 mutant lines was increased, and the survival ratio of T1 mutant lines was decreased dramatically compared with the wild type after the exposure to cold treatment. It was suggested that OsAnn3 was involved in cold tolerance of rice.

read more

Citations
More filters
Journal ArticleDOI

Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review.

TL;DR: The causes ofClimate change, stresses produced due to climate change, impacts on crops, modern breeding technologies, and biotechnological strategies to cope with climate change are summarized in order to develop climate resilient crops.
Journal ArticleDOI

CRISPR for Crop Improvement: An Update Review.

TL;DR: Application of CRISPR/Cas9 techniques will result in the development of non-genetically modified (Non-GMO) crops with the desired trait that can contribute to increased yield potential under biotic and abiotic stress conditions.
Journal ArticleDOI

Rhizosphere microbiome: Engineering bacterial competitiveness for enhancing crop production.

TL;DR: In this paper, the authors focused on shaping rhizosphere microbiome of susceptible host plant from resistant plant which comprises of specific type of microbial community with multiple potential benefits and targeted CRISPR/Cas9 based strategies for the manipulation of susceptibility genes in crop plants for improving plant health.
References
More filters
Journal ArticleDOI

A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.

TL;DR: This study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.
Journal ArticleDOI

Multiplex Genome Engineering Using CRISPR/Cas Systems

TL;DR: The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas adaptive immune system has been shown to facilitate RNA-guided site-specific DNA cleavage as discussed by the authors.

Multiplex Genome Engineering Using CRISPR/Cas Systems

TL;DR: Two different type II CRISPR/Cas systems are engineered and it is demonstrated that Cas9 nucleases can be directed by short RNAs to induce precise cleavage at endogenous genomic loci in human and mouse cells, demonstrating easy programmability and wide applicability of the RNA-guided nuclease technology.
Journal ArticleDOI

RNA-Guided Human Genome Engineering via Cas9

TL;DR: The type II bacterial CRISPR system is engineer to function with custom guide RNA (gRNA) in human cells to establish an RNA-guided editing tool for facile, robust, and multiplexable human genome engineering.
Journal ArticleDOI

RNA-guided editing of bacterial genomes using CRISPR-Cas systems

TL;DR: The exhaustively analyze dual-RNA:Cas9 target requirements to define the range of targetable sequences and show strategies for editing sites that do not meet these requirements, suggesting the versatility of this technique for bacterial genome engineering.
Related Papers (5)