scispace - formally typeset
Open AccessJournal ArticleDOI

Mapping the Lyman-Alpha Emission Around a z~6.6 QSO with MUSE: Extended Emission and a Companion at Close Separation

Reads0
Chats0
TLDR
In this article, the authors used the Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT) to search for extended Lyman-Alpha emission around the z~6.6 QSO J0305-3150.
Abstract
We utilize the Multi Unit Spectroscopic Explorer (MUSE) on the Very Large Telescope (VLT) to search for extended Lyman-Alpha emission around the z~6.6 QSO J0305-3150. After carefully subtracting the point-spread-function, we reach a nominal 5-sigma surface brightness limit of SB = 1.9x10$^{-18}$ erg/s/cm$^2$/arcsec$^2$ over a 1 arcsec$^2$ aperture, collapsing 5 wavelength slices centered at the expected location of the redshifted Lyman-Alpha emission (i.e. at 9256 Ang.). Current data suggest the presence (5-sigma, accounting for systematics) of a Lyman-Alpha nebula that extends for 9 kpc around the QSO. This emission is displaced and redshifted by 155 km/s with respect to the location of the QSO host galaxy traced by the [CII] emission line. The total luminosity is L = 3.0x10$^{42}$ erg/s. Our analysis suggests that this emission is unlikely to rise from optically thick clouds illuminated by the ionizing radiation of the QSO. It is more plausible that the Lyman-Alpha emission is due to fluorescence of the highly ionized optically thin gas. This scenario implies a high hydrogen volume density of n$_H$ ~ 6 cm$^{-3}$. In addition, we detect a Lyman-Alpha emitter (LAE) in the immediate vicinity of the QSO: i.e., with a projected separation of 12.5 kpc and a line-of-sight velocity difference of 560 km/s. The luminosity of the LAE is L = 2.1x10$^{42}$ erg/s and its inferred star-formation-rate is SFR ~ 1.3 M$_\odot$/yr. The probability of finding such a close LAE is one order of magnitude above the expectations based on the QSO-galaxy cross-correlation function. This discovery is in agreement with a scenario where dissipative interactions favour the rapid build-up of super-massive black holes at early Cosmic times.

read more

Citations
More filters
Journal ArticleDOI

400 pc Imaging of a Massive Quasar Host Galaxy at a Redshift of 6.6

TL;DR: In this article, high-resolution Atacama Large Millimeter/submillimeter Array imaging of the dust continuum and the ionized carbon line [C ii] in a luminous quasar host galaxy at z = 6.6, 800 million years after the big bang is reported.
References
More filters
Journal ArticleDOI

Matplotlib: A 2D Graphics Environment

TL;DR: Matplotlib is a 2D graphics package used for Python for application development, interactive scripting, and publication-quality image generation across user interfaces and operating systems.
Journal ArticleDOI

SExtractor: Software for source extraction

TL;DR: The SExtractor ( Source Extractor) as mentioned in this paper is an automated software that optimally detects, deblends, measures and classifies sources from astronomical images, which is particularly suited to the analysis of large extragalactic surveys.
Journal ArticleDOI

Astropy: A community Python package for astronomy

TL;DR: Astropy as discussed by the authors is a Python package for astronomy-related functionality, including support for domain-specific file formats such as flexible image transport system (FITS) files, Virtual Observatory (VO) tables, common ASCII table formats, unit and physical quantity conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS) support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and conversions.
Journal ArticleDOI

Star Formation in the Milky Way and Nearby Galaxies

TL;DR: In this paper, the authors review progress over the past decade in observations of large-scale star formation, with a focus on the interface between extragalactic and Galactic studies.
Journal ArticleDOI

Confidence limits for small numbers of events in astrophysical data

TL;DR: The calculation of limits for small numbers of astronomical counts is based on standard equations derived from Poisson and binomial statistics; although the equations are straightforward, their direct use is cumbersome and involves both table-interpolations and several mathematical operations as discussed by the authors.
Related Papers (5)